1,196 research outputs found

    Prospects and retrospects of land use system through agroforestry practices in Meherpur district, Bangladesh

    Get PDF
    The study aims to explore the prospects and retrospects of land use system through agroforestry practices in Meherpur district, Bangladesh. It particularly focuses on some aspects of land uses of the study area like land use pattern, land ownership, choices of species for agroforestry, farmers’ perceptions towards agroforestry, status and prospects of agroforestry practices. This study was carried out by using mixed method followed by a semi-structure questionnaire. A total of 100 respondents were selected by using snowball purposive sampling method. The study revealed that agriculture was the major occupation (50%) of the selected respondents. Of the total land used by selected respondents, 21% land were used for agroforestry, 69% for agriculture and remaining 10% for homestead purposes. Most of the farmers (60%) were small landholders (1 to 5 acres) and 18% had lesser than 1 acre land. Among them 76% had their own land followed by 8% leased land and 16% both own and leased land. They preferred agroforestry in their homestead (92%), agricultural land (65%), water body (31%) and fallow land (18%). The farmers were practicing different types of agroforestry such as cropland, homestead and aquaculture with boundary plantation by mixing trees, agricultural crops and vegetables in their farmlands to receive diversified outcomes. A remarkable change in land use pattern was found after adopting agroforestry practices in this study area. Maximum respondents practiced agro-forestry in their homestead and croplands. Most of the land (67%) was used for agriculture cultivation while a very small amount of land was used as agroforestry in the study area.Int. J. Agril. Res. Innov. & Tech. 7 (2): 1-6, December, 201

    Topologically Protected Quantum State Transfer in a Chiral Spin Liquid

    Get PDF
    Topology plays a central role in ensuring the robustness of a wide variety of physical phenomena. Notable examples range from the robust current carrying edge states associated with the quantum Hall and the quantum spin Hall effects to proposals involving topologically protected quantum memory and quantum logic operations. Here, we propose and analyze a topologically protected channel for the transfer of quantum states between remote quantum nodes. In our approach, state transfer is mediated by the edge mode of a chiral spin liquid. We demonstrate that the proposed method is intrinsically robust to realistic imperfections associated with disorder and decoherence. Possible experimental implementations and applications to the detection and characterization of spin liquid phases are discussed.Comment: 14 pages, 7 figure

    Prebiotic Systems Chemistry: Complexity Overcoming Clutter

    Get PDF
    Living organisms are the most complex chemical system known to exist, yet exploit only a small constellation of universally conserved metabolites to support indefinite evolution. The conserved chemical simplicity belying biological diversity strongly indicates a unified origin of life. Thus, the chemical relationship between metabolites suggests that a simple set of predisposed chemical reactions predicated the appearance of life on Earth. Conversely, if prebiotic chemistry produces highly complex mixtures, this then implies that the feasibility of elucidating life’s origins is an insurmountable task. Prebiotic systems chemistry, however, has recently been exploiting the chemical links between different metabolites to provide unprecedented scope for exploration of the origins of life, and an exciting new perspective on a 4 billion-year-old problem. At the heart of the systems approach is an understanding that individual classes of metabolites cannot be considered in isolation. This review highlights several recent advances suggesting that the canonical nucleotides and proteinogenic amino acids are predisposed chemical structures

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Prebiotic selection and assembly of proteinogenic amino acids and natural nucleotides from complex mixtures

    Get PDF
    A central problem for the prebiotic synthesis of biological amino acids and nucleotides is to avoid the concomitant synthesis of undesired or irrelevant by-products. Additionally, multistep pathways require mechanisms that enable the sequential addition of reactants and purification of intermediates that are consistent with reasonable geochemical scenarios. Here, we show that 2-aminothiazole reacts selectively with two- and three-carbon sugars (glycolaldehyde and glyceraldehyde, respectively), which results in their accumulation and purification as stable crystalline aminals. This permits ribonucleotide synthesis, even from complex sugar mixtures. Remarkably, aminal formation also overcomes the thermodynamically favoured isomerization of glyceraldehyde into dihydroxyacetone because only the aminal of glyceraldehyde separates from the equilibrating mixture. Finally, we show that aminal formation provides a novel pathway to amino acids that avoids the synthesis of the non-proteinogenic α,α-disubstituted analogues. The common physicochemical mechanism that controls the proteinogenic amino acid and ribonucleotide assembly from prebiotic mixtures suggests that these essential classes of metabolite had a unified chemical origin

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Performance of missing transverse momentum reconstruction with the ATLAS detector using proton–proton collisions at √s = 13 TeV

    Get PDF
    The performance of the missing transverse momentum (EmissT) reconstruction with the ATLAS detector is evaluated using data collected in proton–proton collisions at the LHC at a centre-of-mass energy of 13 TeV in 2015. To reconstruct EmissT, fully calibrated electrons, muons, photons, hadronically decaying τ -leptons, and jets reconstructed from calorimeter energy deposits and charged-particle tracks are used. These are combined with the soft hadronic activity measured by reconstructed charged-particle tracks not associated with the hard objects. Possible double counting of contributions from reconstructed charged-particle tracks from the inner detector, energy deposits in the calorimeter, and reconstructed muons from the muon spectrometer is avoided by applying a signal ambiguity resolution procedure which rejects already used signals when combining the various EmissT contributions. The individual terms as well as the overall reconstructed EmissT are evaluated with various performance metrics for scale (linearity), resolution, and sensitivity to the data-taking conditions. The method developed to determine the systematic uncertainties of the EmissT scale and resolution is discussed. Results are shown based on the full 2015 data sample corresponding to an integrated luminosity of 3.2 fb−1

    Measurement of the t¯tZ and t¯tW cross sections in proton-proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A measurement of the associated production of a top-quark pair (t¯t) with a vector boson (W, Z) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented, using 36.1  fb−1 of integrated luminosity collected by the ATLAS detector at the Large Hadron Collider. Events are selected in channels with two same- or opposite-sign leptons (electrons or muons), three leptons or four leptons, and each channel is further divided into multiple regions to maximize the sensitivity of the measurement. The t¯tZ and t¯tW production cross sections are simultaneously measured using a combined fit to all regions. The best-fit values of the production cross sections are σt¯tZ=0.95±0.08stat±0.10syst pb and σt¯tW=0.87±0.13stat±0.14syst pb in agreement with the Standard Model predictions. The measurement of the t¯tZ cross section is used to set constraints on effective field theory operators which modify the t¯tZ vertex

    Comparative Evaluation of Operational Land Imager sensor on board Landsat 8 and Landsat 9 for Land use Land Cover Mapping over a Heterogeneous Landscape

    Get PDF
    Since its advent in 1972, the Landsat satellites have witnessed consistent improvements in sensor characteristics, which have significantly improved accuracy. In this study, a comparison of the accuracy of Landsat OLI and OLI-2 satellites in land use land cover (LULC) mapping has been made. For this, image fusion techniques have been applied to enhance the spatial resolution of both OLI and OLI-2 multispectral images, and then a support vector machine (SVM) classifier has been used for LULC mapping. The results show that LULC classification from OLI-2 has better accuracy (83.4%) than OLI (92.4%). The validation of classified LULC maps shows that the OLI-2 data is more accurate in distinguishing dense and sparse vegetation as well as darker and lighter objects. The relationship between LULC maps and surface biophysical parameters using Local Moran’s I also shows better performance of the OLI-2 sensor in LULC mapping than the OLI sensor
    corecore