9,381 research outputs found
Learning in Online Continuing Professional Development: An Institutionalist View on the Personal Learning Environment
The nature of institutions is an important question for the Personal Learning Environment (PLE). Whilst the PLE has tended to focus on what is considered to be “non-institutional” technology like social software, most online tools today have a corporate/institutional foundation. How should educators position themselves with learners who have to negotiate different institutional and discursive contexts – whether within corporate social software, formal education, work or the family? Drawing on previous work focusing on how learners maintain personal coherence in organising learning between different contexts, institutional theory is used to revise the model of the learner as a ‘viable system’, which focuses on the dynamics of transactions that learners make with different institutional entities. Data from an online Continuing Professional Development (CPD) course in acute cancer care is analysed to show how learner transactions indicate constraints bearing upon learners both from their professional context and from their formal educational study. The pattern of learner engagement suggests that the interaction of constraints creates the conditions to motivate in-depth contribution to the course forums. This finding leads us to suggest a rethink of pedagogy within the PLE, and a broader consideration of institutional and other constraints in educational dynamics
Yale School of Public Health Symposium on tissue imaging mass spectrometry: illuminating phenotypic heterogeneity and drug disposition at the molecular level.
‘A picture is worth a thousand words’ is an idiom from the English language (‘borrowed’ from on old Chinese proverb) that conveys the notion that a complex idea can be succinctly and fully described by a single image. Never has this expression been truer than in the clinical and pharmaceutical arenas. Enormous strides have been made by the scientific community in the evolving field of biomedical imaging with the aim of representing and/or quantifying aspects of disease and drug action by using tools such as radiography, MRI, PET, and ultrasound. Yet linking the phenotypical data generated by these systems to the genome is a challenging task. Identifying the link between the mechanism of disease or failed drug response to the genome of an individual is difficult, because central pieces of information are missing. However, imaging mass spectrometry (IMS) can overcome this issue. IMS aims to detect the molecular constituents of the tissue; these can then be correlated with genome-related characteristics, such as gene expression patterns and possible mutations, and ultimately provide a phenotypic molecular link to the complex disease biology. The big data technology of IMS can generate spatial information of thousands of metabolites and proteins from within a tissue, facilitating a deeper understanding of the connections between the genome, phenotypic characteristics and the biological response. It is a technology that has the potential to serve as a segue between gene expression and observed biological signal
A Novel Unsupervised Method to Identify Genes Important in the Anti-viral Response: Application to Interferon/Ribavirin in Hepatitis C Patients
Background: Treating hepatitis C with interferon/ribavirin results in a varied response in terms of decrease in viral titer and ultimate outcome. Marked responders have a sharp decline in viral titer within a few days of treatment initiation, whereas in other patients there is no effect on the virus (poor responders). Previous studies have shown that combination therapy modifies expression of hundreds of genes in vitro and in vivo. However, identifying which, if any, of these genes have a role in viral clearance remains challenging. Aims: The goal of this paper is to link viral levels with gene expression and thereby identify genes that may be responsible for early decrease in viral titer. Methods: Microarrays were performed on RNA isolated from PBMC of patients undergoing interferon/ribavirin therapy. Samples were collected at pre-treatment (day 0), and 1, 2, 7, 14 and 28 days after initiating treatment. A novel method was applied to identify genes that are linked to a decrease in viral titer during interferon/ribavirin treatment. The method uses the relationship between inter-patient gene expression based proximities and inter-patient viral titer based proximities to define the association between microarray gene expression measurements of each gene and viral-titer measurements. Results: We detected 36 unique genes whose expressions provide a clustering of patients that resembles viral titer based clustering of patients. These genes include IRF7, MX1, OASL and OAS2, viperin and many ISG's of unknown function. Conclusion: The genes identified by this method appear to play a major role in the reduction of hepatitis C virus during the early phase of treatment. The method has broad utility and can be used to analyze response to any group of factors influencing biological outcome such as antiviral drugs or anti-cancer agents where microarray data are available. © 2007 Brodsky et al
Recommended from our members
In-street wind direction variability in the vicinity of a busy intersection in central London
We present results from fast-response wind measurements within and above a busy intersection between two street canyons (Marylebone Road and Gloucester Place) in Westminster, London taken as part of the DAPPLE (Dispersion of Air Pollution and Penetration into the Local Environment; www.dapple.org.uk) 2007 field campaign. The data reported here were collected using ultrasonic anemometers on the roof-top of a building adjacent to the intersection and at two heights on a pair of lamp-posts on opposite sides of the intersection. Site characteristics, data analysis and the variation of intersection flow with the above-roof wind direction (θref) are discussed. Evidence of both flow channelling and recirculation was identified within the canyon, only a few metres from the intersection for along-street and across-street roof-top winds respectively. Results also indicate that for oblique rooftop flows, the intersection flow is a complex combination of bifurcated channelled flows, recirculation and corner vortices. Asymmetries in local building geometry around the intersection and small changes in the background wind direction (changes in 15-min mean θref of 5–10 degrees) were also observed to have profound influences on the behaviour of intersection flow patterns. Consequently, short time-scale variability in the background flow direction can lead to highly scattered in-street mean flow angles masking the true multi-modal features of the flow and thus further complicating modelling challenges
Topologically Protected Quantum State Transfer in a Chiral Spin Liquid
Topology plays a central role in ensuring the robustness of a wide variety of
physical phenomena. Notable examples range from the robust current carrying
edge states associated with the quantum Hall and the quantum spin Hall effects
to proposals involving topologically protected quantum memory and quantum logic
operations. Here, we propose and analyze a topologically protected channel for
the transfer of quantum states between remote quantum nodes. In our approach,
state transfer is mediated by the edge mode of a chiral spin liquid. We
demonstrate that the proposed method is intrinsically robust to realistic
imperfections associated with disorder and decoherence. Possible experimental
implementations and applications to the detection and characterization of spin
liquid phases are discussed.Comment: 14 pages, 7 figure
Ischaemic strokes in patients with pulmonary arteriovenous malformations and hereditary hemorrhagic telangiectasia: associations with iron deficiency and platelets.
<div><p>Background</p><p>Pulmonary first pass filtration of particles marginally exceeding ∼7 µm (the size of a red blood cell) is used routinely in diagnostics, and allows cellular aggregates forming or entering the circulation in the preceding cardiac cycle to lodge safely in pulmonary capillaries/arterioles. Pulmonary arteriovenous malformations compromise capillary bed filtration, and are commonly associated with ischaemic stroke. Cohorts with CT-scan evident malformations associated with the highest contrast echocardiographic shunt grades are known to be at higher stroke risk. Our goal was to identify within this broad grouping, which patients were at higher risk of stroke.</p><p>Methodology</p><p>497 consecutive patients with CT-proven pulmonary arteriovenous malformations due to hereditary haemorrhagic telangiectasia were studied. Relationships with radiologically-confirmed clinical ischaemic stroke were examined using logistic regression, receiver operating characteristic analyses, and platelet studies.</p><p>Principal Findings</p><p>Sixty-one individuals (12.3%) had acute, non-iatrogenic ischaemic clinical strokes at a median age of 52 (IQR 41–63) years. In crude and age-adjusted logistic regression, stroke risk was associated not with venous thromboemboli or conventional neurovascular risk factors, but with low serum iron (adjusted odds ratio 0.96 [95% confidence intervals 0.92, 1.00]), and more weakly with low oxygen saturations reflecting a larger right-to-left shunt (adjusted OR 0.96 [0.92, 1.01]). For the same pulmonary arteriovenous malformations, the stroke risk would approximately double with serum iron 6 µmol/L compared to mid-normal range (7–27 µmol/L). Platelet studies confirmed overlooked data that iron deficiency is associated with exuberant platelet aggregation to serotonin (5HT), correcting following iron treatment. By MANOVA, adjusting for participant and 5HT, iron or ferritin explained 14% of the variance in log-transformed aggregation-rate (p = 0.039/p = 0.021).</p><p>Significance</p><p>These data suggest that patients with compromised pulmonary capillary filtration due to pulmonary arteriovenous malformations are at increased risk of ischaemic stroke if they are iron deficient, and that mechanisms are likely to include enhanced aggregation of circulating platelets.</p></div
Extracellular ATP released by osteoblasts is a key local inhibitor of bone mineralisation
Previous studies have shown that exogenous ATP (>1µM) prevents bone formation in vitro by blocking mineralisation of the collagenous matrix. This effect is thought to be mediated via both P2 receptor-dependent pathways and a receptor-independent mechanism (hydrolysis of ATP to produce the mineralisation inhibitor pyrophosphate, PPi). Osteoblasts are also known to release ATP constitutively. To determine whether this endogenous ATP might exert significant biological effects, bone-forming primary rat osteoblasts were cultured with 0.5-2.5U/ml apyrase (which sequentially hydrolyses ATP to ADP to AMP + 2Pi). Addition of 0.5U/ml apyrase to osteoblast culture medium degraded extracellular ATP to <1% of control levels within 2 minutes; continuous exposure to apyrase maintained this inhibition for up to 14 days. Apyrase treatment for the first 72 hours of culture caused small decreases (≤25%) in osteoblast number, suggesting a role for endogenous ATP in stimulating cell proliferation. Continuous apyrase treatment for 14 days (≥0.5U/ml) increased mineralisation of bone nodules by up to 3-fold. Increases in bone mineralisation were also seen when osteoblasts were cultured with the ATP release inhibitors, NEM and brefeldin A, as well as with P2X1 and P2X7 receptor antagonists. Apyrase decreased alkaline phosphatase (TNAP) activity by up to 60%, whilst increasing the activity of the PPi-generating ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs) up to 2.7-fold. Both collagen production and adipocyte formation were unaffected. These data suggest that nucleotides released by osteoblasts in bone could act locally, via multiple mechanisms, to limit mineralisation
Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions
Background
Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals.
Results
Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall.
Conclusions
The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions
Decoherence induced deformation of the ground state in adiabatic quantum computation
Despite more than a decade of research on adiabatic quantum computation
(AQC), its decoherence properties are still poorly understood. Many theoretical
works have suggested that AQC is more robust against decoherence, but a
quantitative relation between its performance and the qubits' coherence
properties, such as decoherence time, is still lacking. While the thermal
excitations are known to be important sources of errors, they are predominantly
dependent on temperature but rather insensitive to the qubits' coherence. Less
understood is the role of virtual excitations, which can also reduce the ground
state probability even at zero temperature. Here, we introduce normalized
ground state fidelity as a measure of the decoherence-induced deformation of
the ground state due to virtual transitions. We calculate the normalized
fidelity perturbatively at finite temperatures and discuss its relation to the
qubits' relaxation and dephasing times, as well as its projected scaling
properties.Comment: 10 pages, 3 figure
- …
