44 research outputs found
High Content Image Analysis Identifies Novel Regulators of Synaptogenesis in a High-Throughput RNAi Screen of Primary Neurons
The formation of synapses, the specialized points of chemical communication between neurons, is a highly regulated developmental process fundamental to establishing normal brain circuitry. Perturbations of synapse formation and function causally contribute to human developmental and degenerative neuropsychiatric disorders, such as Alzheimer's disease, intellectual disability, and autism spectrum disorders. Many genes controlling synaptogenesis have been identified, but lack of facile experimental systems has made systematic discovery of regulators of synaptogenesis challenging. Thus, we created a high-throughput platform to study excitatory and inhibitory synapse development in primary neuronal cultures and used a lentiviral RNA interference library to identify novel regulators of synapse formation. This methodology is broadly applicable for high-throughput screening of genes and drugs that may rescue or improve synaptic dysfunction associated with cognitive function and neurological disorders.National Institutes of Health (U.S.) (MH095096)National Institutes of Health (U.S.) (R01 GM089652
A combined cellomics and proteomics approach to uncover neuronal pathways to psychiatric disorder
Studying biological mechanisms underlying neuropsychiatric disorders is highly challenging as many risk genes are associated with these disorders. This complexity requires research approaches to reliably dissect the cell biology of the risk genes involved. Here, we describe a combined cellomics–proteomics approach that allows (a) medium-throughput functional screening and unbiased selection of important risk genes, and (b) discovery of common functional pathways and interactome connections of selected risk genes. The overlay of pathway and proteome data from selected genes in a biological context can be used to formulate new testable hypothesis of both the genetics and the biology of the disorders
Impaired Cognitive Function and Altered Hippocampal Synapse Morphology in Mice Lacking Lrrtm1, a Gene Associated with Schizophrenia
Recent genetic linkage analysis has shown that LRRTM1 (Leucine rich repeat transmembrane neuronal 1) is associated with schizophrenia. Here, we characterized Lrrtm1 knockout mice behaviorally and morphologically. Systematic behavioral analysis revealed reduced locomotor activity in the early dark phase, altered behavioral responses to novel environments (open-field box, light-dark box, elevated plus maze, and hole board), avoidance of approach to large inanimate objects, social discrimination deficit, and spatial memory deficit. Upon administration of the NMDA receptor antagonist MK-801, Lrrtm1 knockout mice showed both locomotive activities in the open-field box and responses to the inanimate object that were distinct from those of wild-type mice, suggesting that altered glutamatergic transmission underlay the behavioral abnormalities. Furthermore, administration of a selective serotonin reuptake inhibitor (fluoxetine) rescued the abnormality in the elevated plus maze. Morphologically, the brains of Lrrtm1 knockout mice showed reduction in total hippocampus size and reduced synaptic density. The hippocampal synapses were characterized by elongated spines and diffusely distributed synaptic vesicles, indicating the role of Lrrtm1 in maintaining synaptic integrity. Although the pharmacobehavioral phenotype was not entirely characteristic of those of schizophrenia model animals, the impaired cognitive function may warrant the further study of LRRTM1 in relevance to schizophrenia
LRRTM4-C538Y novel gene mutation is associated with hereditary macular degeneration with novel dysfunction of ON-type bipolar cells
Chromatin remodeling and extragenic transcription at the MHC class II locus control region
In vivo, a wild-type pattern of major histocompatibility complex (MHC) class II expression requires a locus control region (LCR). Whereas the role of promoter-proximal MHC class II regulatory sequences is well established, the function of the distal LCR remained obscure. We show here that this LCR is bound by the MHC class II-specific transactivators regulatory factor X (RFX) and class II transactivator (CIITA). Binding of these factors induces long-range histone acetylation, RNA polymerase II recruitment and the synthesis of extragenic transcripts within the LCR. The finding that RFX and CIITA regulate the function of the MHC class II LCR reveals an unexpected degree of complexity in the mechanisms controlling MHC class II gene expression
