49 research outputs found

    Neoadjuvant capecitabine, radiotherapy, and bevacizumab (CRAB) in locally advanced rectal cancer: results of an open-label phase II study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preoperative capecitabine-based chemoradiation is a standard treatment for locally advanced rectal cancer (LARC). Here, we explored the safety and efficacy of the addition of bevacizumab to capecitabine and concurrent radiotherapy for LARC.</p> <p>Methods</p> <p>Patients with MRI-confirmed stage II/III rectal cancer received bevacizumab 5 mg/kg i.v. 2 weeks prior to neoadjuvant chemoradiotherapy followed by bevacizumab 5 mg/kg on Days 1, 15 and 29, capecitabine 825 mg/m<sup>2 </sup>twice daily on Days 1-38, and concurrent radiotherapy 50.4 Gy (1.8 Gy/day, 5 days/week for 5 weeks + three 1.8 Gy/day), starting on Day 1. Total mesorectal excision was scheduled 6-8 weeks after completion of chemoradiotherapy. Tumour regression grades (TRG) were evaluated on surgical specimens according to Dworak. The primary endpoint was pathological complete response (pCR).</p> <p>Results</p> <p>61 patients were enrolled (median age 60 years [range 31-80], 64% male). Twelve patients (19.7%) had T3N0 tumours, 1 patient T2N1, 19 patients (31.1%) T3N1, 2 patients (3.3%) T2N2, 22 patients (36.1%) T3N2 and 5 patients (8.2%) T4N2. Median tumour distance from the anal verge was 6 cm (range 0-11). Grade 3 adverse events included dermatitis (n = 6, 9.8%), proteinuria (n = 4, 6.5%) and leucocytopenia (n = 3, 4.9%). Radical resection was achieved in 57 patients (95%), and 42 patients (70%) underwent sphincter-preserving surgery. TRG 4 (pCR) was recorded in 8 patients (13.3%) and TRG 3 in 9 patients (15.0%). T-, N- and overall downstaging rates were 45.2%, 73.8%, and 73.8%, respectively.</p> <p>Conclusions</p> <p>This study demonstrates the feasibility of preoperative chemoradiotherapy with bevacizumab and capecitabine. The observed adverse events of neoadjuvant treatment are comparable with those previously reported, but the pCR rate was lower.</p

    The use of preoperative radiotherapy in the management of patients with clinically resectable rectal cancer: a practice guideline

    Get PDF
    BACKGROUND: This systematic review with meta-analysis was designed to evaluate the literature and to develop recommendations regarding the use of preoperative radiotherapy in the management of patients with resectable rectal cancer. METHODS: The MEDLINE, CANCERLIT and Cochrane Library databases, and abstracts published in the annual proceedings of the American Society of Clinical Oncology and the American Society for Therapeutic Radiology and Oncology were systematically searched for evidence. Relevant reports were reviewed by four members of the Gastrointestinal Cancer Disease Site Group and the references from these reports were searched for additional trials. External review by Ontario practitioners was obtained through a mailed survey. Final approval of the practice guideline report was obtained from the Practice Guidelines Coordinating Committee. RESULTS: Two meta-analyses of preoperative radiotherapy versus surgery alone, nineteen trials that compared preoperative radiotherapy plus surgery to surgery alone, and five trials that compared preoperative radiotherapy to alternative treatments were obtained. Randomized trials demonstrate that preoperative radiotherapy followed by surgery is significantly more effective than surgery alone in preventing local recurrence in patients with resectable rectal cancer and it may also improve survival. A single trial, using surgery with total mesorectal excision, has shown similar benefits in local recurrence. CONCLUSION: For adult patients with clinically resectable rectal cancer we conclude that: • Preoperative radiotherapy is an acceptable alternative to the previous practice of postoperative radiotherapy for patients with stage II and III resectable rectal cancer; • Both preoperative and postoperative radiotherapy decrease local recurrence but neither improves survival as much as postoperative radiotherapy combined with chemotherapy. Therefore, if preoperative radiotherapy is used, chemotherapy should be added postoperatively to at least patients with stage III disease

    Plasmonic metal-organic framework nanocomposites enabled by degenerately doped molybdenum oxides

    Full text link
    Metal-organic frameworks (MOFs) nanocomposites are under the limelight due to their unique electronic, optical, and surface properties for various applications. Plasmonic MOFs enabled by noble metal nanostructures are an emerging class of MOF nanocomposites with efficient solar light-harvesting capability. However, major concerns such as poor photostability, sophisticated synthesis processes, and high fabrication cost are raised. Here, we develop a novel plasmonic MOF nanocomposite consisting of the ultra-thin degenerately doped molybdenum oxide core and the flexible iron MOF (FeMOF) shell through a hydrothermal growth, featuring low cost, facile synthesis, and non-toxicity. More importantly, the incorporation of plasmonic oxides in the highly porous MOF structure enhances the visible light absorbability, demonstrating improved photobleaching performances of various azo and non-azo dyes compared to that of pure FeMOF without the incorporation of oxidative agents. Furthermore, the nanocomposite exhibits enhanced sensitivity and selectivity towards NO2 gas at room temperature, attributed to the electron-rich surface of plasmonic oxides. This work possibly broadens the exploration of plasmonic MOF nanocomposites for practical and efficient solar energy harvesting, environmental remediation, and environmental monitoring applications

    Nitrogen-Doped Oxygenated Molybdenum Phosphide as an Efficient Electrocatalyst for Hydrogen Evolution in Alkaline Media

    Get PDF
    Phosphides of transition metals (TMPs) are a developing class of materials for hydrogen evolution reaction (HER) as an alternative to expensive noble metals to produce clean energy. Herein, the nitrogen-doped molybdenum oxide (MoOx) is developed via a facile and simple hydrothermal method, followed by annealing in the N2 atmosphere and phosphorization to form a nitrogen-doped oxygenated molybdenum phosphide (N-MoP) sphere-shaped structure. The developed N-doped phosphide structure depicts enhanced HER activity by reaching a current density of 10 mA cm−2 at a very low overpotential of only 87 mV, which is much better than annealed nitrogen-doped molybdenum oxide (A-MoOx) 138 mV in alkaline medium. N-MoP is a highly efficient electrocatalyst for HER attributed to a more exposed surface, large electrode/electrolyte interface and appropriate binding energies for reactants. This study extends the opportunity of developing nitrogen-doped TMPs, which can display exceptional properties as compared to their oxides

    2D Plasmonic Tungsten Oxide Enabled Ultrasensitive Fiber Optics Gas Sensor

    Full text link
    Functional materials coated on optical fibers have demonstrated great potential for optical gas sensing applications. However, their sensitivity is typically limited to the sub-parts per million (sub-ppm) range. Here, for the first time a 2D near-infrared plasmonic tungsten oxide (WOx) enabled ultrasensitive fiber optics gas sensor on a side-polished D-shape single mode optical fiber is presented. The plasmon resonance wavelength range of 2D WOx is matched with a conventional telecommunications wavelength of 1550 nm for driving the optical fiber, therefore inducing a strong light–matter interaction. Upon the surface adsorption of gas molecules, free electrons in the 2D WOx body are redistributed changing the plasmon resonance properties and hence the transmission through the optical fiber. The sensor is selectively responsive to NO2 at concentrations down to 44 parts per billion (ppb) with a limit of detection of 8 ppb at a relatively low elevated temperature. Such an excellent sensing performance is significantly improved over the previously reported fiber optics NO2 sensors, which suggests the integration of 2D plasmonic degenerated semiconductors as a viable approach to develop high-performance fiber optics gas sensors
    corecore