28 research outputs found
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Derivatives of benzo[b]furan. Part I. Conformational studies of khellinone and visnaginone
The Fast, Luminous Ultraviolet Transient AT2018cow: Extreme Supernova, or Disruption of a Star by an Intermediate-Mass Black Hole?
Wide-field optical surveys have begun to uncover large samples of fast (t_rise 10 days. The spectrum remains extremely hot throughout its evolution, and the photospheric radius contracts with time (receding below R<10^14 cm after 1 month). This behavior does not match that of any known supernova, although a relativistic jet within a fallback supernova could explain some of the observed features. Alternatively, the transient could originate from the disruption of a star by an intermediate-mass black hole, although this would require long-lasting emission of highly super-Eddington thermal radiation. In either case, AT 2018cow suggests that the population of fast luminous transients represents a new class of astrophysical event. Intensive follow-up of this event in its late phases, and of any future events found at comparable distance, will be essential to better constrain their origins
Blood Viscosity and the Expression of Inflammatory and Adhesion Markers in Homozygous Sickle Cell Disease Subjects with Chronic Leg Ulcers
OBJECTIVE: To determine differences in TNF-α, IL-1β, IL-10, sICAM-1 concentrations, leg hypoxia and whole blood viscosity (WBV) at shear rates of 46 sec(-1) and 230 sec(-1) in persons with homozygous S sickle cell disease (SCD) with and without chronic leg ulceration and in AA genotype controls. DESIGN: & Methods: fifty-five age-matched participants were recruited into the study: 31 SS subjects without leg ulcers (SS(n)), 24 SS subjects with leg ulcers (SS(u)) and 18 AA controls. Haematological indices were measured using an AC.Tron Coulter Counter. Quantification of inflammatory, anti-inflammatory and adhesion molecules was performed by ELISA. Measurement of whole blood viscosity was done using a Wells Brookfield cone-plate viscometer. Quantification of microvascular tissue oxygenation was done by Visible Lightguide spectrophotometry. RESULTS: TNF-α and whole blood viscosity at 46 sec(-1) and 230 sec(-1) (1.75, 2.02 vs. 0.83, 1.26, p<0.05) were significantly greater in sickle cell disease subjects than in controls. There were no differences in plasma concentration of sICAM-1, IL-1β and IL-10 between SCD subjects and controls. IL-1β (median, IQR: 0.96, 1.7 vs. 0, 0.87; p<0.01) and sICAM-1 (226.5, 156.48 vs. 107.63, 121.5, p<0.005) were significantly greater in SS(u) group compared with SS(n). However there were no differences in TNF-α (2, 3.98 vs. 0, 2.66) and IL-10 (13.34, 5.95 vs. 11.92, 2.99) concentrations between SS(u) and SS(n). WBV in the SS(u) group at 46 sec(-1) and at 230 Sec 1 were 1.9 (95%CI; 1.2, 3.1) and 2.3 (1.2, 4.4) times greater than in the SS(n) group. There were no differences in the degree of tissue hypoxia as determined by lightguide spectrophotometry. CONCLUSION: Inflammatory, adhesion markers and WBV may be associated with leg ulceration in sickle cell disease by way of inflammation-mediated vasoocclusion/vasoconstriction. Impaired skin oxygenation does not appear to be associated with chronic ulcers in these subjects with sickle cell disease
Recommended from our members
The fast, luminous ultraviolet transient AT2018cow: Extreme supernova, or disruption of a star by an intermediate-mass black hole?
Wide-field optical surveys have begun to uncover large samples of fast (trise ≲ 5 d), luminous (Mpeak < -18), blue transients. While commonly attributed to the breakout of a supernova shock into a dense wind, the great distances to the transients of this class found so far have hampered detailed investigation of their properties. We present photometry and spectroscopy from a comprehensive worldwide campaign to observe AT 2018cow (ATLAS 18qqn), the first fast-luminous optical transient to be found in real time at lowredshift. Our first spectra (<2 days after discovery) are entirely featureless. A very broad absorption feature suggestive of nearrelativistic velocities develops between 3 and 8 days, then disappears. Broad emission features of H and He develop after >10 days. The spectrum remains extremely hot throughout its evolution, and the photospheric radius contracts with time (receding below R < 1014 cm after 1 month). This behaviour does not match that of any known supernova, although a relativistic jet within a fallback supernova could explain some of the observed features. Alternatively, the transient could originate from the disruption of a star by an intermediate-mass black hole, although thiswould require long-lasting emission of highly super-Eddington thermal radiation. In either case, AT 2018cow suggests that the population of fast luminous transients represents a new class of astrophysical event. Intensive follow-up of this event in its late phases, and of any future events found at comparable distance, will be essential to better constrain their origins
