91 research outputs found

    Crucial role of calbindin-D28k in the pathogenesis of Alzheimer's disease mouse model

    Get PDF
    Calbindin-D28k (CB), one of the major calcium-binding and buffering proteins, has a critical role in preventing a neuronal death as well as maintaining calcium homeostasis. Although marked reductions of CB expression have been observed in the brains of mice and humans with Alzheimer disease (AD), it is unknown whether these changes contribute to AD-related dysfunction. To determine the pathogenic importance of CB depletions in AD models, we crossed 5 familial AD mutations (5XFAD; Tg) mice with CB knock-out (CBKO) mice and generated a novel line CBKO·5XFAD (CBKOTg) mice. We first identified the change of signaling pathways and differentially expressed proteins globally by removing CB in Tg mice using mass spectrometry and antibody microarray. Immunohistochemistry showed that CBKOTg mice had significant neuronal loss in the subiculum area without changing the magnitude (number) of amyloid β-peptide (Aβ) plaques deposition and elicited significant apoptotic features and mitochondrial dysfunction compared with Tg mice. Moreover, CBKOTg mice reduced levels of phosphorylated mitogen-activated protein kinase (extracellular signal-regulated kinase) 1/2 and cAMP response element-binding protein at Ser-133 and synaptic molecules such as N-methyl-D-aspartate receptor 1 (NMDA receptor 1), NMDA receptor 2A, PSD-95 and synaptophysin in the subiculum compared with Tg mice. Importantly, this is the first experimental evidence that removal of CB from amyloid precursor protein/presenilin transgenic mice aggravates AD pathogenesis, suggesting that CB has a critical role in AD pathogenesis

    Assessment of intrahepatic blood flow by Doppler ultrasonography: Relationship between the hepatic vein, portal vein, hepatic artery and portal pressure measured intraoperatively in patients with portal hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abnormality of hepatic vein (HV) waveforms evaluated by Doppler ultrasonography has been widely studied in patients with chronic liver disease. We investigated the correlation between changes in HV waveforms and portal vein velocity (PVVel), the hepatic artery pulsatility index (HAPI), and also the extent of abnormal Doppler HV waveforms expressed as damping index (DI), severity of portal hypertension expressed as Child-Pugh scores and portal pressure (PP) measured directly from patients with portal hypertension (PHT) to evaluate the indicative value of abnormal HV waveforms and discuss the cause of abnormal HV waveform.</p> <p>Methods</p> <p>Sixty patients who had been diagnosed with PHT and accepted surgical therapy of portosystemic shunts were investigated. PP was measured intraoperatively. Thirty healthy volunteers with no history of chronic liver disease were enrolled as the control group. HV waveforms were categorized as triphasic, biphasic or monophasic. DI was compared as the quantitative indicator of abnormal HV waveforms. Another two Doppler parameters, PVVel and HAPI were also measured. These Doppler features were compared with PP, Child-Pugh scores and histological changes assessed by liver biopsy.</p> <p>Results</p> <p>In the patient group, the Doppler flow waveforms in the middle HV were triphasic in 31.6%, biphasic in 46.7%, and monophasic in 21.6% of subjects. These figures were 86.7%, 10.0%, and 3.3%, respectively, in healthy subjects. With the flattening of HV waveforms, the HAPI increased significantly (<it>r </it>= 00.438, <it>p </it>< 0.0001), whereas PVVel decreased significantly (<it>r </it>= -0.44, <it>p <</it>0.0001). Blood flow parameters, HAPI, PVVel and HV-waveform changes showed no significant correlations with Child-Pugh scores. The latter showed a significant correlation with PP (<it>r </it>= 0.589, <it>p </it>= 0.044). Changes of HV waveform and DI significantly correlated with PP (<it>r </it>= 0.579, <it>r </it>= 0.473, <it>p <</it>0.0001), and significant correlation between DI and Child-Pugh scores was observed (<it>r </it>= 0.411, <it>p = </it>0.001). PP was significantly different with respect to nodule size (<it>p </it>< 0.05), but HV-waveform changes were not significantly correlated with pathological changes.</p> <p>Conclusion</p> <p>In patients with PHT, a monophasic HV waveform indicates higher portal pressure. Furthermore, quantitative indicator DI can reflect both higher portal pressure and more severe liver dysfunction. Flattening of HV waveforms accompanied by an increase in the HAPI and decrease in PVVel support the hypothesis that histological changes reducing HV compliance be the cause of abnormality of Doppler HV waveforms from the hemodynamic angle.</p

    The added value of quantitative multi-voxel MR spectroscopy in breast magnetic resonance imaging

    Get PDF
    To determine whether quantitative multivoxel MRS improves the accuracy of MRI in the assessment of breast lesions. Twenty-five consecutive patients with 26 breast lesions a parts per thousand yen1 cm assessed as BI-RADS 3 or 4 with mammography underwent quantitative multivoxel MRS and contrast-enhanced MRI. The choline (Cho) concentration was calculated using the unsuppressed water signal as a concentration reference. ROC analysis established the diagnostic accuracy of MRI and MRS in the assessment of breast lesions. Respective Cho concentrations in 26 breast lesions re-classified by MRI as BI-RADS 2 (n = 5), 3 (n = 8), 4 (n = 5) and 5 (n = 8) were 1.16 +/- 0.43 (mean +/- SD), 1.43 +/- 0.47, 2.98 +/- 2.15 and 4.94 +/- 3.10 mM. Two BI-RADS 3 lesions and all BI-RADS 4 and 5 lesions were malignant on histopathology and had Cho concentrations between 1.7 and 11.8 mM (4.03 +/- 2.72 SD), which were significantly higher (P = 0.01) than that in the 11 benign lesions (0.4-1.5 mM; 1.19 +/- 0.33 SD). Furthermore, Cho concentrations in the benign and malignant breast lesions in BI-RADS 3 category differed (P = 0.01). The accuracy of combined multivoxel MRS/breast MRI BI-RADS re-classification (AUC = 1.00) exceeded that of MRI alone (AUC = 0.96 +/- 0.03). These preliminary data indicate that multivoxel MRS improves the accuracy of MRI when using a Cho concentration cut-off a parts per thousand currency sign1.5 mM for benign lesions. Key Points aEuro cent Quantitative multivoxel MR spectroscopy can improve the accuracy of contrast-enhanced breast MRI. aEuro cent Multivoxel-MRS can differentiate breast lesions by using the highest Cho-concentration. aEuro cent Multivoxel-MRS can exclude patients with benign breast lesions from further invasive diagnostic procedures

    High-efficiency tooth bleaching using non-thermal atmospheric pressure plasma with low concentration of hydrogen peroxide

    Get PDF
    Light-activated tooth bleaching with a high hydrogen peroxide (HP; H(2)O(2)) concentration has risks and the actual role of the light source is doubtful. The use of conventional light might result in an increase in the temperature and cause thermal damage to the health of the tooth tissue. OBJECTIVE: This study investigated the efficacy of tooth bleaching using non-thermal atmospheric pressure plasma (NAPP) with 15% carbamide peroxide (CP; CH(6)N(2)O(3)) including 5.4% HP, as compared with conventional light sources. MATERIAL AND METHODS: Forty human teeth were randomly divided into four groups: Group I (CP+NAPP), Group II (CP+plasma arc lamp; PAC), Group III (CP+diode laser), and Group IV (CP alone). Color changes (ΔE ) of the tooth and tooth surface temperatures were measured. Data were evaluated by one-way analysis of variance (ANOVA) and post-hoc Tukey's tests. RESULTS: Group I showed the highest bleaching efficacy, with a ΔE value of 1.92-, 2.61 and 2.97-fold greater than those of Groups II, III and IV, respectively (P<0.05). The tooth surface temperature was maintained around 37ºC in Group I, but it reached 43ºC in Groups II and III. CONCLUSIONS: The NAPP has a greater capability for effective tooth bleaching than conventional light sources with a low concentration of HP without causing thermal damage. Tooth bleaching using NAPP can become a major technique for in-office bleaching in the near future

    Melatonin protects nigral dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP+) neurotoxicity in rats.

    No full text
    In the present study, the in vivo neuroprotective effects of melatonin, as an antioxidant, were assessed in Sprague-Dawley rats with a unilateral lesion of substantia nigra (SN) caused by a stereotaxic injection of neurotoxin, 1-methyl-4-phenylpyridinium (MPP+). When expressed as a percentage ratio of lesioned to intact side, increased lipid peroxidation product (malondialdehyde, MDA, 117% of control) and decreased tyrosine hydroxylase (TH) enzyme activity (60% of control) in SN were observed 4 h after MPP+ lesion. In contrast, however, melatonin treatment prevented MPP+ neurotoxicity by the almost complete recovery of MDA (99% of control) and TH levels (96% of control), indicating the potent antioxidative effects of melatonin. In addition, further reduction of TH enzyme activity (52% of control) was seen 1 week after MPP+ infusion. Continuous (twice a day for 5 days), not acute (4 h) treatment with melatonin produced the partial, but not statistically significant, recovery of TH enzyme activity (71% of control), when sacrificed 1 week after MPP+ lesion. Taken together, the present results support the hypothesis that melatonin may provide the useful therapeutic strategies for the treatment of oxidative stress-induced neurodegenerative disease such as Parkinson's disease (PD)
    corecore