10,254 research outputs found
Ofatumumab and high-dose methylprednisolone for the treatment of patients with relapsed or refractory chronic lymphocytic leukemia.
Ofatumumab is a humanized anti-CD20 monoclonal antibody that has been approved by the FDA for the treatment of patients with chronic lymphocytic leukemia. We conducted a phase II single-arm study at a single center. Patients received ofatumumab (300 mg then 1000 mg weekly for 12 weeks) and methylprednisolone (1000 mg/m(2) for 3 days of each 28-day cycle). Twenty-one patients enrolled, including 29% with unfavorable cytogenetics (del17p or del11q). Ninety percent of patients received the full course without dose reductions or delays. The overall response rate was 81% (17/21) with 5% complete response, 10% nodular partial response, 67% partial response, 14% stable disease and 5% progressive disease. After a median follow-up of 31 months, the median progression-free survival was 9.9 months and the median time to next treatment was 12.1 months. The median overall survival has not yet been reached. The combination of high-dose methylprednisolone and ofatumumab is an effective and tolerable treatment regimen. This regimen may be useful for patients who are unable to tolerate more aggressive therapies, or have not responded to other treatments
Inactivation of hypoxia inducible factor (HIF) 1 alpha induces obesity-associated metabolic disorders through brown adipose tissue dysfunction
published_or_final_versionThe 14th Medical Research Conference, Hong Kong, 10 January 2009. In Hong Kong Medical Journal, 2009, v. 15, suppl. 1, p. 40, article no. 6
Cardiac-Specific Disruption of Bin1 in Mice Enables a Model of Stress- and Age-Associated Dilated Cardiomyopathy
6G White Paper on Machine Learning in Wireless Communication Networks
The focus of this white paper is on machine learning (ML) in wireless
communications. 6G wireless communication networks will be the backbone of the
digital transformation of societies by providing ubiquitous, reliable, and
near-instant wireless connectivity for humans and machines. Recent advances in
ML research has led enable a wide range of novel technologies such as
self-driving vehicles and voice assistants. Such innovation is possible as a
result of the availability of advanced ML models, large datasets, and high
computational power. On the other hand, the ever-increasing demand for
connectivity will require a lot of innovation in 6G wireless networks, and ML
tools will play a major role in solving problems in the wireless domain. In
this paper, we provide an overview of the vision of how ML will impact the
wireless communication systems. We first give an overview of the ML methods
that have the highest potential to be used in wireless networks. Then, we
discuss the problems that can be solved by using ML in various layers of the
network such as the physical layer, medium access layer, and application layer.
Zero-touch optimization of wireless networks using ML is another interesting
aspect that is discussed in this paper. Finally, at the end of each section,
important research questions that the section aims to answer are presented
Vascular Proteomics Reveal Novel Proteins Involved in SMC Phenotypic Change: OLR1 as a SMC Receptor Regulating Proliferation and Inflammatory Response
Neointimal hyperplasia of vascular smooth muscle cells (VSMC) plays a critical role in atherosclerotic plaque formation and in-stent restenosis, but the underlying mechanisms are still incompletely understood. We performed a proteomics study to identify novel signaling molecules organizing the VSMC hyperplasia. The differential proteomics analysis in a balloon- induced injury model of rat carotid artery revealed that the expressions of 44 proteins are changed within 3 days post injury. The combination of cellular function assays and a protein network analysis further demonstrated that 27 out of 44 proteins constitute key signaling networks orchestrating the phenotypic change of VSMC from contractile to epithelial-like synthetic. Among the list of proteins, the in vivo validation specifically revealed that six proteins (Rab 15, ITR, OLR1, PDH beta, PTP epsilon) are positive regulators for VSMC hyperplasia. In particular, the OLR1 played dual roles in the VSMC hyperplasia by directly mediating oxidized LDL-induced monocyte adhesion via NF-kappa B activation and by assisting the PDGF-induced proliferation/migration. Importantly, OLR1 and PDGFR beta were associated in close proximity in the plasma membrane. Thus, this study elicits the protein network organizing the phenotypic change of VSMC in the vascular injury diseases such as atherosclerosis and discovers OLR1 as a novel molecular link between the proliferative and inflammatory responses of VSMCs.1133Ysciescopu
In vitro antioxidant properties of polysaccharides from Armillaria mellea in batch fermentation
Antioxidant properties of exopolysaccharides (EPS) and intracellular polysaccharides (IPS) obtained respectively from mycelia and filtrates of submerged culture by Armillaria mellea in a 20-L stirred tank bioreactor were investigated. Effective production of EPS and IPS is available by submerged culture of A. mellea with respective number average molecular weights and protein/polysaccharide ratios as 7.68×106 Da and 7.68% as well as 5.65×106 Da and 5.26%. Both EPS and IPS exhibit powerful antioxidant activities by conjugated diene method, chelating effect on ferrous ions and scavenging effect on superoxide anion, as evidenced by their quite low EC50 values (< 5 mg/mL). Results confirmed that fermented A. mellea polysaccharides are potential antioxidant sources of both healthy medicine and food industries.Key words: Armillaria mellea, intracellular polysaccharide, exopolysaccharide, antioxidant activity
Observation of Bose-Einstein Condensation in a Strong Synthetic Magnetic Field
Extensions of Berry's phase and the quantum Hall effect have led to the
discovery of new states of matter with topological properties. Traditionally,
this has been achieved using gauge fields created by magnetic fields or spin
orbit interactions which couple only to charged particles. For neutral
ultracold atoms, synthetic magnetic fields have been created which are strong
enough to realize the Harper-Hofstadter model. Despite many proposals and major
experimental efforts, so far it has not been possible to prepare the ground
state of this system. Here we report the observation of Bose-Einstein
condensation for the Harper-Hofstadter Hamiltonian with one-half flux quantum
per lattice unit cell. The diffraction pattern of the superfluid state directly
shows the momentum distribution on the wavefuction, which is gauge-dependent.
It reveals both the reduced symmetry of the vector potential and the twofold
degeneracy of the ground state. We explore an adiabatic many-body state
preparation protocol via the Mott insulating phase and observe the superfluid
ground state in a three-dimensional lattice with strong interactions.Comment: 6 pages, 5 figures. Supplement: 6 pages, 4 figure
Dangerous Skyrmions in Little Higgs Models
Skyrmions are present in many models of electroweak symmetry breaking where
the Higgs is a pseudo-Goldstone boson of some strongly interacting sector. They
are stable, composite objects whose mass lies in the range 10-100 TeV and can
be naturally abundant in the universe due to their small annihilation
cross-section. They represent therefore good dark matter candidates. We show
however in this work that the lightest skyrmion states are electrically charged
in most of the popular little Higgs models, and hence should have been directly
or indirectly observed in nature already. The charge of the skyrmion under the
electroweak gauge group is computed in a model-independent way and is related
to the presence of anomalies in the underlying theory via the
Wess-Zumino-Witten term.Comment: 31 pages, 4 figures; v2: minor changes, one reference added, version
to appear in JHEP; v3: erratum added, conclusions unchange
Study of psi(2S) decays to X J/psi
Using J/psi -> mu^+ mu^- decays from a sample of approximately 4 million
psi(2S) events collected with the BESI detector, the branching fractions of
psi(2S) -> eta J/psi, pi^0 pi^0 J/psi, and anything J/psi normalized to that of
psi(2S) -> pi^+ pi^- J/psi are measured. The results are B(psi(2S) -> eta
J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.098 \pm 0.005 \pm 0.010, B(psi(2S) ->
pi^0 pi^0 J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.570 \pm 0.009 \pm 0.026, and
B(psi(2S) -> anything J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 1.867 \pm 0.026
\pm 0.055.Comment: 13 pages, 8 figure
- …
