51 research outputs found
Somatostatin and dopamine receptors as targets for medical treatment of Cushing's Syndrome
Somatostatin (SS) and dopamine (DA) receptors are widely expressed in neuroendocrine tumours that cause Cushing's Syndrome (CS). Increasing knowledge of specific subtype expression within these tumours and the ability to target these receptor subtypes with high-affinity compounds, has driven the search for new SS- or DA-based medical therapies for the various forms of CS. In Cushing's disease, corticotroph adenomas mainly express dopamine receptor subtype 2 (D2) and somatostatin receptor subtype 5 (sst5), whereas sst2is expressed at lower levels. Activation of these receptors can inhibit ACTH-release in primary cultured corticotroph adenomas and compounds that target either sst5(pasireotide, or SOM230) or D2(cabergoline) have shown significant efficacy in subsets of patients in recent clinical studies. Combination therapy, either by administration of both types of compounds separately or by treatment with novel somatostatin-dopamine chimeric molecules (e.g. BIM-23A760), appears to be a promising approach in this respect. In selected cases of Ectopic ACTH-producing Syndrome (EAS), the sst2-preferring compound octreotide is able to reduce cortisol levels effectively. A recent study showed that D2receptors are also significantly expressed in the majority of EAS and that cabergoline may decrease cortisol levels in subsets of these patients. In both normal adrenal tissue as well as in adrenal adenomas and carcinomas that cause CS, sst and DA receptor expression has been demonstrated. Although selected cases of adrenal CS may benefit from sst or DA-targeted treatment, its total contribution to the treatment of these patients is likely to be low as surgery is effective in most cases
Conversion of daily pegvisomant to weekly pegvisomant combined with long-acting somatostatin analogs, in controlled acromegaly patients
The efficacy of combined treatment in active acromegaly with both long-acting somatostatin analogs (SRIF) and pegvisomant (PEG-V) has been well established. The aim was to describe the PEG-V dose reductions after the conversion from daily PEG-V to combination treatment. To clarify the individual beneficial and adverse effects, in two acromegaly patients, who only normalized their insulin like growth factor (IGF-I) levels with high-dose pegvisomant therapy. We present two cases of a 31 and 44 years old male with gigantism and acromegaly that were controlled subsequently by surgery, radiotherapy, SRIF analogs and daily PEG-V treatment. They were converted to combined treatment of monthly SSA and (twice) weekly PEG-V. High dose SSA treatment was added while the PEG-V dose was decreased during carful monitoring of the IGF-I. After switching from PEG-V monotherapy to SRIF analogs plus pegvisomant combination therapy IGF-I remained normal. However, the necessary PEG-V dose, to normalize IGF-I differed significantly between these two patients. One patient needed twice weekly 100 mg, the second needed 60 mg once weekly on top of their monthly lanreotide Autosolution injections of 120 mg. The weekly dose reduction was 80 and 150 mg. After the introducing of lanreotide, fasting glucose and glycosylated haemoglobin concentrations increased. Diabetic medication had to be introduced or increased. No changes in liver tests or in pituitary adenoma size were observed. In these two patients, PEG-V in combination with long-acting SRIF analogs was as effective as PEG-V monotherapy in normalizing IGF-I levels, although significant dose-reductions in PEG-V could be achieved. However, there seems to be a wide variation in the reduction of PEG-V dose, which can be obtained after conversion to combined treatment
Structural basis for delta cell paracrine regulation in pancreatic islets
International audienceLittle is known about the role of islet delta cells in regulating blood glucose homeostasis in vivo. Delta cells are important paracrine regulators of beta cell and alpha cell secretory activity, however the structural basis underlying this regulation has yet to be determined. Most delta cells are elongated and have a well-defined cell soma and a filopodia-like structure. Using in vivo optogenetics and high-speed Ca2+ imaging, we show that these filopodia are dynamic structures that contain a secretory machinery, enabling the delta cell to reach a large number of beta cells within the islet. This provides for efficient regulation of beta cell activity and is modulated by endogenous IGF-1/VEGF-A signaling. In pre-diabetes, delta cells undergo morphological changes that may be a compensation to maintain paracrine regulation of the beta cell. Our data provides an integrated picture of how delta cells can modulate beta cell activity under physiological conditions
Regeneration of Pancreatic Non-β Endocrine Cells in Adult Mice following a Single Diabetes-Inducing Dose of Streptozotocin
The non-β endocrine cells in pancreatic islets play an essential counterpart and regulatory role to the insulin-producing β-cells in the regulation of blood-glucose homeostasis. While significant progress has been made towards the understanding of β-cell regeneration in adults, very little is known about the regeneration of the non-β endocrine cells such as glucagon-producing α-cells and somatostatin producing δ-cells. Previous studies have noted the increase of α-cell composition in diabetes patients and in animal models. It is thus our hypothesis that non-β-cells such as α-cells and δ-cells in adults can regenerate, and that the regeneration accelerates in diabetic conditions. To test this hypothesis, we examined islet cell composition in a streptozotocin (STZ)-induced diabetes mouse model in detail. Our data showed the number of α-cells in each islet increased following STZ-mediated β-cell destruction, peaked at Day 6, which was about 3 times that of normal islets. In addition, we found δ-cell numbers doubled by Day 6 following STZ treatment. These data suggest α- and δ-cell regeneration occurred rapidly following a single diabetes-inducing dose of STZ in mice. Using in vivo BrdU labeling techniques, we demonstrated α- and δ-cell regeneration involved cell proliferation. Co-staining of the islets with the proliferating cell marker Ki67 showed α- and δ-cells could replicate, suggesting self-duplication played a role in their regeneration. Furthermore, Pdx1+/Insulin− cells were detected following STZ treatment, indicating the involvement of endocrine progenitor cells in the regeneration of these non-β cells. This is further confirmed by the detection of Pdx1+/glucagon+ cells and Pdx1+/somatostatin+ cells following STZ treatment. Taken together, our study demonstrated adult α- and δ-cells could regenerate, and both self-duplication and regeneration from endocrine precursor cells were involved in their regeneration
The Herpes Simplex Virus-1 Transactivator Infected Cell Protein-4 Drives VEGF-A Dependent Neovascularization
Herpes simplex virus-1 (HSV-1) causes lifelong infection affecting between 50 and 90% of the global population. In addition to causing dermal lesions, HSV-1 is a leading cause of blindness resulting from recurrent corneal infection. Corneal disease is characterized by loss of corneal immunologic privilege and extensive neovascularization driven by vascular endothelial growth factor-A (VEGF-A). In the current study, we identify HSV-1 infected cells as the dominant source of VEGF-A during acute infection, and VEGF-A transcription did not require TLR signaling or MAP kinase activation. Rather than being an innate response to the pathogen, VEGF-A transcription was directly activated by the HSV-1 encoded immediate early transcription factor, ICP4. ICP4 bound the proximal human VEGF-A promoter and was sufficient to promote transcription. Transcriptional activation also required cis GC-box elements common to the VEGF-A promoter and HSV-1 early genes. Our results suggest that the neovascularization characteristic of ocular HSV-1 disease is a direct result of HSV-1's major transcriptional regulator, ICP4, and similarities between the VEGF-A promoter and those of HSV-1 early genes
Somatostatin release, electrical activity, membrane currents and exocytosis in human pancreatic delta cells
Antiadipogene Wirkung eines oral verfügbaren nichtpeptidergen Insulinrezeptor-Aktivators im nichtgenetischen Mausmodell des Typ 2 Diabetes mellitus
- …
