1,728 research outputs found
Lifting of the Landau level degeneracy in graphene devices in a tilted magnetic field
We report on transport and capacitance measurements of graphene devices in
magnetic fields up to 30 T. In both techniques, we observe the full splitting
of Landau levels and we employ tilted field experiments to address the origin
of the observed broken symmetry states. In the lowest energy level, the spin
degeneracy is removed at filling factors and we observe an enhanced
energy gap. In the higher levels, the valley degeneracy is removed at odd
filling factors while spin polarized states are formed at even . Although
the observation of odd filling factors in the higher levels points towards the
spontaneous origin of the splitting, we find that the main contribution to the
gap at , and is due to the Zeeman energy.Comment: 5 pages, 4 figure
Scaling of the quantum-Hall plateau-plateau transition in graphene
The temperature dependence of the magneto-conductivity in graphene shows that
the widths of the longitudinal conductivity peaks, for the N=1 Landau level of
electrons and holes, display a power-law behavior following with a scaling exponent . Similarly the
maximum derivative of the quantum Hall plateau transitions
scales as with a scaling exponent
for both the first and second electron and hole Landau
level. These results confirm the universality of a critical scaling exponent.
In the zeroth Landau level, however, the width and derivative are essentially
temperature independent, which we explain by a temperature independent
intrinsic length that obscures the expected universal scaling behavior of the
zeroth Landau level
Transport Gap in Suspended Bilayer Graphene at Zero Magnetic Field
We report a change of three orders of magnitudes in the resistance of a
suspended bilayer graphene flake which varies from a few ks in the high
carrier density regime to several Ms around the charge neutrality point
(CNP). The corresponding transport gap is 8 meV at 0.3 K. The sequence of
appearing quantum Hall plateaus at filling factor followed by
suggests that the observed gap is caused by the symmetry breaking of the lowest
Landau level. Investigation of the gap in a tilted magnetic field indicates
that the resistance at the CNP shows a weak linear decrease for increasing
total magnetic field. Those observations are in agreement with a spontaneous
valley splitting at zero magnetic field followed by splitting of the spins
originating from different valleys with increasing magnetic field. Both, the
transport gap and field response point toward spin polarized layer
antiferromagnetic state as a ground state in the bilayer graphene sample. The
observed non-trivial dependence of the gap value on the normal component of
suggests possible exchange mechanisms in the system.Comment: 8 pages, 5 figure
Quantum-Hall activation gaps in graphene
We have measured the quantum-Hall activation gaps in graphene at filling
factors and for magnetic fields up to 32 T and temperatures
from 4 K to 300 K. The gap can be described by thermal excitation to
broadened Landau levels with a width of 400 K. In contrast, the gap measured at
is strongly temperature and field dependent and approaches the expected
value for sharp Landau levels for fields T and temperatures
K. We explain this surprising behavior by a narrowing of the lowest Landau
level.Comment: 4 pages, 4 figures, updated version after review, accepted for PR
- …
