1,728 research outputs found

    Lifting of the Landau level degeneracy in graphene devices in a tilted magnetic field

    Get PDF
    We report on transport and capacitance measurements of graphene devices in magnetic fields up to 30 T. In both techniques, we observe the full splitting of Landau levels and we employ tilted field experiments to address the origin of the observed broken symmetry states. In the lowest energy level, the spin degeneracy is removed at filling factors ν=±1\nu=\pm1 and we observe an enhanced energy gap. In the higher levels, the valley degeneracy is removed at odd filling factors while spin polarized states are formed at even ν\nu. Although the observation of odd filling factors in the higher levels points towards the spontaneous origin of the splitting, we find that the main contribution to the gap at ν=4,8\nu= -4,-8, and 12-12 is due to the Zeeman energy.Comment: 5 pages, 4 figure

    Scaling of the quantum-Hall plateau-plateau transition in graphene

    Get PDF
    The temperature dependence of the magneto-conductivity in graphene shows that the widths of the longitudinal conductivity peaks, for the N=1 Landau level of electrons and holes, display a power-law behavior following ΔνTκ\Delta \nu \propto T^{\kappa} with a scaling exponent κ=0.37±0.05\kappa = 0.37\pm0.05. Similarly the maximum derivative of the quantum Hall plateau transitions (dσxy/dν)max(d\sigma_{xy}/d\nu)^{max} scales as TκT^{-\kappa} with a scaling exponent κ=0.41±0.04\kappa = 0.41\pm0.04 for both the first and second electron and hole Landau level. These results confirm the universality of a critical scaling exponent. In the zeroth Landau level, however, the width and derivative are essentially temperature independent, which we explain by a temperature independent intrinsic length that obscures the expected universal scaling behavior of the zeroth Landau level

    Transport Gap in Suspended Bilayer Graphene at Zero Magnetic Field

    Get PDF
    We report a change of three orders of magnitudes in the resistance of a suspended bilayer graphene flake which varies from a few kΩ\Omegas in the high carrier density regime to several MΩ\Omegas around the charge neutrality point (CNP). The corresponding transport gap is 8 meV at 0.3 K. The sequence of appearing quantum Hall plateaus at filling factor ν=2\nu=2 followed by ν=1\nu=1 suggests that the observed gap is caused by the symmetry breaking of the lowest Landau level. Investigation of the gap in a tilted magnetic field indicates that the resistance at the CNP shows a weak linear decrease for increasing total magnetic field. Those observations are in agreement with a spontaneous valley splitting at zero magnetic field followed by splitting of the spins originating from different valleys with increasing magnetic field. Both, the transport gap and BB field response point toward spin polarized layer antiferromagnetic state as a ground state in the bilayer graphene sample. The observed non-trivial dependence of the gap value on the normal component of BB suggests possible exchange mechanisms in the system.Comment: 8 pages, 5 figure

    Quantum-Hall activation gaps in graphene

    Get PDF
    We have measured the quantum-Hall activation gaps in graphene at filling factors ν=2\nu=2 and ν=6\nu=6 for magnetic fields up to 32 T and temperatures from 4 K to 300 K. The ν=6\nu =6 gap can be described by thermal excitation to broadened Landau levels with a width of 400 K. In contrast, the gap measured at ν=2\nu=2 is strongly temperature and field dependent and approaches the expected value for sharp Landau levels for fields B>20B > 20 T and temperatures T>100T > 100 K. We explain this surprising behavior by a narrowing of the lowest Landau level.Comment: 4 pages, 4 figures, updated version after review, accepted for PR
    corecore