952,111 research outputs found
Comparison of CSMA based MAC protocols of wireless sensor networks
Energy conservation has been an important area of interest in Wireless Sensor
networks (WSNs). Medium Access Control (MAC) protocols play an important role
in energy conservation. In this paper, we describe CSMA based MAC protocols for
WSN and analyze the simulation results of these protocols. We implemented
S-MAC, T-MAC, B-MAC, B-MAC+, X-MAC, DMAC and Wise-MAC in TOSSIM, a simulator
which unlike other simulators simulates the same code running on real hardware.
Previous surveys mainly focused on the classification of MAC protocols
according to the techniques being used or problem dealt with and presented a
theoretical evaluation of protocols. This paper presents the comparative study
of CSMA based protocols for WSNs, showing which MAC protocol is suitable in a
particular environment and supports the arguments with the simulation results.
The comparative study can be used to find the best suited MAC protocol for
wireless sensor networks in different environments.Comment: International Journal of AdHoc Network Systems, Volume 2, Number 2,
April 201
Adaptive Duty Cycling MAC Protocols Using Closed-Loop Control for Wireless Sensor Networks
The fundamental design goal of wireless sensor MAC protocols is to minimize unnecessary power consumption of the sensor nodes, because of its stringent resource constraints and ultra-power limitation. In existing MAC protocols in wireless sensor networks (WSNs), duty cycling, in which each node periodically cycles between the active and sleep states, has been introduced to reduce unnecessary energy consumption. Existing MAC schemes, however, use a fixed duty cycling regardless of multi-hop communication and traffic fluctuations. On the other hand, there is a tradeoff between energy efficiency and delay caused by duty cycling mechanism in multi-hop communication and existing MAC approaches only tend to improve energy efficiency with sacrificing data delivery delay. In this paper, we propose two different MAC schemes (ADS-MAC and ELA-MAC) using closed-loop control in order to achieve both energy savings and minimal delay in wireless sensor networks. The two proposed MAC schemes, which are synchronous and asynchronous approaches, respectively, utilize an adaptive timer and a successive preload frame with closed-loop control for adaptive duty cycling. As a result, the analysis and the simulation results show that our schemes outperform existing schemes in terms of energy efficiency and delivery delay
An efficient scalable scheduling mac protocol for underwater sensor networks
Underwater Sensor Networks (UWSNs) utilise acoustic waves with comparatively lower loss and longer range than those of electromagnetic waves. However, energy remains a challenging issue in addition to long latency, high bit error rate, and limited bandwidth. Thus, collision and retransmission should be efficiently handled at Medium Access Control (MAC) layer in order to reduce the energy cost and also to improve the throughput and fairness across the network. In this paper, we propose a new reservation-based distributed MAC protocol called ED-MAC, which employs a duty cycle mechanism to address the spatial-temporal uncertainty and the hidden node problem to effectively avoid collisions and retransmissions. ED-MAC is a conflict-free protocol, where each sensor schedules itself independently using local information. Hence, ED-MAC can guarantee conflict-free transmissions and receptions of data packets. Compared with other conflict-free MAC protocols, ED-MAC is distributed and more reliable, i.e., it schedules according to the priority of sensor nodes which based on their depth in the network. We then evaluate design choices and protocol performance through extensive simulation to study the load effects and network scalability in each protocol. The results show that ED-MAC outperforms the contention-based MAC protocols and achieves a significant improvement in terms of successful delivery ratio, throughput, energy consumption, and fairness under varying offered traffic and number of nodes
Portability, compatibility and reuse of MAC protocols across different IoT radio platforms
To cope with the diversity of Internet of Things (loT) requirements, a large number of Medium Access Control (MAC) protocols have been proposed in scientific literature, many of which are designed for specific application domains. However, for most of these MAC protocols, no multi-platform software implementation is available. In fact, the path from conceptual MAC protocol proposed in theoretical papers, towards an actual working implementation is rife with pitfalls. (i) A first problem is the timing bugs, frequently encountered in MAC implementations. (ii) Furthermore, once implemented, many MAC protocols are strongly optimized for specific hardware, thereby limiting the potential of software reuse or modifications. (iii) Finally, in real-life conditions, the performance of the MAC protocol varies strongly depending on the actual underlying radio chip. As a result, the same MAC protocol implementation acts differently per platform, resulting in unpredictable/asymmetrical behavior when multiple platforms are combined in the same network. This paper describes in detail the challenges related to multi-platform MAC development, and experimentally quantifies how the above issues impact the MAC protocol performance when running MAC protocols on multiple radio chips. Finally, an overall methodology is proposed to avoid the previously mentioned cross-platform compatibility issues. (C) 2018 Elsevier B.V. All rights reserved
Optimal Power Control in Decentralized Gaussian Multiple Access Channels
We consider the decentralized power optimization problem for Gaussian
fast-fading multiple access channel (MAC) so that the average sum-throughput is
maximized. In our MAC setup, each transmitter has access to only its own fading
coefficient or channel state information (CSI) while the receiver has full CSI
available at all instants. Unlike centralized MAC (full CSIT MAC) where the
optimal powers are known explicitly, the analytical solution for optimal
decentralized powers does not seem feasible. In this letter, we specialize
alternating-maximization (AM) method for numerically computing the optimal
powers and ergodic capacity of the decentralized MAC for general fading
statistics and average power constraints. For illustration, we apply our AM
method to compute the capacity of MAC channels with fading distributions such
as Rayleigh, Rician etc.Comment: 4 pages, 4 figures, accepted for publication to IEEE Communication
letter
Mitral Annular and Coronary Artery Calcification Are Associated with Mortality in HIV-Infected Individuals.
BackgroundHIV infection increases cardiovascular risk. Coronary artery calcification (CAC) and mitral annular calcification (MAC) identify patients at risk for cardiovascular disease (CVD). The purpose of this study was to examine the association between MAC, CAC and mortality in HIV-infected individuals.Methods and resultsWe studied 152 asymptomatic HIV-infected individuals with transthoracic echocardiography (TTE) and computed tomography (CT). MAC was identified on TTE using standardized criteria. Presence of CAC, CAC score and CAC percentiles were determined using the modified Agatston criteria. Mortality data was obtained from the Social Security and National Death Indices (SSDI/NDI). The median age was 49 years; 87% were male. The median duration of HIV was 16 years; 84% took antiretroviral therapy; 64% had an undetectable viral load. CVD risk factors included hypertension (35%), smoking (62%) and dyslipidemia (35%). Twenty-five percent of individuals had MAC, and 42% had CAC. Over a median follow-up of 8 years, 11 subjects died. Subjects with CAC had significantly higher mortality compared to those with MAC only or no MAC. The Harrell's C-statistic of CAC was 0.66 and increased to 0.75 when MAC was added (p = 0.05). MAC, prior CVD, age and HIV viral load were independently associated with higher age- and gender-adjusted CAC percentiles in an adjusted model (p < 0.05 for all).ConclusionIn HIV patients, the presence of MAC, traditional risk factors and HIV viral load were independently associated with CAC. Presence of CAC and MAC may be useful in identifying HIV-infected individuals at higher risk for death
- …
