24,404 research outputs found
Interaction-Enhanced Coherence Between Two-Dimensional Dirac Layers
We estimate the strength of interaction-enhanced coherence between two
graphene or topological insulator surface-state layers by solving
imaginary-axis gap equations in the random phase approximation. Using a
self-consistent treatment of dynamic screening of Coulomb interactions in the
gapped phase, we show that the excitonic gap can reach values on the order of
the Fermi energy at strong interactions. The gap is discontinuous as a function
of interlayer separation and effective fine structure constant, revealing a
first order phase transition between effectively incoherent and interlayer
coherent phases. To achieve the regime of strong coherence the interlayer
separation must be smaller than the Fermi wavelength, and the extrinsic
screening of the medium embedding the Dirac layers must be negligible. In the
case of a graphene double-layer we comment on the supportive role of the remote
-bands neglected in the two-band Dirac model.Comment: 14 pages, 9 figure
Electrical transport through a single-electron transistor strongly coupled to an oscillator
We investigate electrical transport through a single-electron transistor
coupled to a nanomechanical oscillator. Using a combination of a
master-equation approach and a numerical Monte Carlo method, we calculate the
average current and the current noise in the strong-coupling regime, studying
deviations from previously derived analytic results valid in the limit of
weak-coupling. After generalizing the weak-coupling theory to enable the
calculation of higher cumulants of the current, we use our numerical approach
to study how the third cumulant is affected in the strong-coupling regime. In
this case, we find an interesting crossover between a weak-coupling transport
regime where the third cumulant heavily depends on the frequency of the
oscillator to one where it becomes practically independent of this parameter.
Finally, we study the spectrum of the transport noise and show that the two
peaks found in the weak-coupling limit merge on increasing the coupling
strength. Our calculation of the frequency-dependence of the noise also allows
to describe how transport-induced damping of the mechanical oscillations is
affected in the strong-coupling regime.Comment: 11 pages, 9 figure
Membrane paradigm and entropy of black holes in the Euclidean action approach
The membrane paradigm approach to black holes fixes in the vicinity of the
event horizon a fictitious surface, the stretched horizon, so that the
spacetime outside remains unchanged and the spacetime inside is vacuum. Using
this powerful method, several black hole properties have been found and
settled, such as the horizon's viscosity, electrical conductivity, resistivity,
as well as other properties. On the other hand the Euclidean action approach to
black hole spacetimes has been very fruitful in understanding black hole
entropy. Combining both the Euclidean action and membrane paradigm approaches a
direct derivation of the black hole entropy is given. In the derivation it is
considered that the only fields present are the gravitational and matter
fields, with no electric field.Comment: 13 page
Tunneling Conductance Between Parallel Two Dimensional Electron Systems
We derive and evaluate expressions for the low temperature {\it dc}
equilibrium tunneling conductance between parallel two-dimensional electron
systems. Our theory is based on a linear-response formalism and on
impurity-averaged perturbation theory. The disorder broadening of features in
the dependence of tunneling conductance on sheet densities and in-plane
magnetic field strengths is influenced both by the finite lifetime of electrons
within the wells and by non-momentum-conserving tunneling events. Disorder
vertex corrections are important only for weak in-plane magnetic fields and
strong interwell impurity-potential correlations. We comment on the basis of
our results on the possibility of using tunneling measurements to determine the
lifetime of electrons in the quantum wells.Comment: 14 pages, 5 Fig. not included, revtex, IUcm92-00
Correlations in Two-Dimensional Vortex Liquids
We report on a high temperature perturbation expansion study of the
superfluid-density spatial correlation function of a Ginzburg-Landau-model
superconducting film in a magnetic field. We have derived a closed form which
expresses the contribution to the correlation function from each graph of the
perturbation theory in terms of the number of Euler paths around appropriate
subgraphs. We have enumerated all graphs appearing out to 10-th order in the
expansion and have evaluated their contributions to the correlation function.
Low temperature correlation functions, obtained using Pad\'{e} approximants,
are in good agreement with Monte Carlo simulation results and show that the
vortex-liquid becomes strongly correlated at temperatures well above the vortex
solidification temperature.Comment: 18 pages (RevTeX 3.0) and 4 figures, available upon request,
IUCM93-01
Fabrication and properties of gallium phosphide variable colour displays
The unique properties of single-junction gallium phosphide devices incorporating both red and green radiative recombination centers were investigated in application to the fabrication of monolithic 5 x 7 displays capable of displaying symbolic and alphanumeric information in a multicolor format. A number of potentially suitable material preparation techniques were evaluated in terms of both material properties and device performance. Optimum results were obtained for double liquid-phase-epitaxial process in which an open-tube dipping technique was used for n-layer growth and a sealed tipping procedure for subsequent p-layer growth. It was demonstrated that to prepare devices exhibiting a satisfactory range of dominant wavelengths which can be perceived as distinct emission colors extending from the red through green region of the visible spectrum involves a compromise between the material properties necessary for efficient red emission and those considered optimum for efficient green emission
Vertical migration maintains phytoplankton position in a tidal channel with residual flow
A tidal channel can retain phytoplankton, despite a residual flow, if the phytoplankton migrate vertically with a daily rhythm. Tidal currents are slowed down by bed friction and so plankton experience faster flow when higher in the water column. The lateral movement of the plankton depends on the nature of the vertical migration, particularly the time spent near the surface and the phase of the tide. A model of this process accorded with observations of chlorophyll derived from in situ fluorescence at a mooring in a tidal channel. Peaks in chlorophyll at the end of the flood tide indicated the presence of a phytoplankton bloom downstream of the mooring. Peaks in chlorophyll at the ends of the morning flood tides were 3 to 4 times larger than at the ends of the evening floods, over several days. In contrast, well-mixed particulates were removed from the channel by the residual flow in just 2 d. Both the day-night asymmetry and the sustained presence of chlorophyll were explained by allowing for vertical migration of the phytoplankton and constraining the period during which they were near the surface. Tidal channels retaining phytoplankton that migrate vertically can be ecologically more diverse and yield higher commercial output of farmed bivalves. The natural timings of some phytoplankton blooms in tidal channels are controlled by the nature of the migration. Although a by-product of vertical migration, longer residence in the tidal channel affords the phytoplankton more nutrients than phytoplankton that advect offshore
An Action for Black Hole Membranes
The membrane paradigm is the remarkable view that, to an external observer, a
black hole appears to behave exactly like a dynamical fluid membrane, obeying
such pre-relativistic equations as Ohm's law and the Navier-Stokes equation. It
has traditionally been derived by manipulating the equations of motion. Here we
provide an action formulation of this picture, clarifying what underlies the
paradigm, and simplifying the derivations. Within this framework, we derive
previous membrane results, and extend them to dyonic black hole solutions. We
discuss how it is that an action can produce dissipative equations. Using a
Euclidean path integral, we show that familiar semi-classical thermodynamic
properties of black holes also emerge from the membrane action. Finally, in a
Hamiltonian description, we establish the validity of a minimum entropy
production principle for black holes.Comment: LaTeX, 30 Pages, minor editorial change
Collective excitations in double-layer quantum Hall systems
We study the collective excitation spectra of double-layer quantum-Hall
systems using the single mode approximation. The double-layer in-phase density
excitations are similar to those of a single-layer system. For out-of-phase
density excitations, however, both inter-Landau-level and intra-Landau-level
double-layer modes have finite dipole oscillator strengths. The oscillator
strengths at long wavelengths for the latter transitions are shifted upward by
interactions by identical amounts proportional to the interlayer Coulomb
coupling. The intra-Landau-level out-of-phase mode has a gap when the ground
state is incompressible except in the presence of spontaneous inter-layer
coherence. We compare our results with predictions based on the
Chern-Simons-Landau-Ginzburg theory for double-layer quantum Hall systems.Comment: RevTeX, 21 page
- …
