715 research outputs found
Hartree-Fock Theory of Hole Stripe States
We report on Hartree-Fock theory results for stripe states of two-dimensional
hole systems in quantum wells grown on GaAs (311)A substrates. We find that the
stripe orientation energy has a rich dependence on hole density, and on
in-plane field magnitude and orientation. Unlike the electron case, the
orientation energy is non-zero for zero in-plane field, and the ground state
orientation can be either parallel or perpendicular to a finite in-plane field.
We predict an orientation reversal transition in in-plane fields applied along
the direction.Comment: 5 pages including 4 figure
Perturbation theories for the S=1/2 spin ladder with four-spin ring exchange
The isotropic S=1/2 antiferromagnetic spin ladder with additional four-spin
ring exchange is studied perturbatively in the strong coupling regime with the
help of cluster expansion technique, and by means of bosonization in the weak
coupling limit. It is found that a sufficiently large strength of ring exchange
leads to a second-order phase transition, and the shape of the boundary in the
vicinity of the known exact transition point is obtained. The critical exponent
for the gap is found to be , in agreement both with exact results
available for the dimer line and with the bosonization analysis. The phase
emerging for high values of the ring exchange is argued to be gapped and
spontaneously dimerized. The results for the transition line from strong
coupling and from weak coupling match with each other naturally.Comment: 8 pages, 4 figures, some minor changes in text and reference
An Investigation of Orientational Symmetry-Breaking Mechanisms in High Landau Levels
The principal axes of the recently discovered anisotropic phases of 2D
electron systems at high Landau level occupancy are consistently oriented
relative to the crystal axes of the host semiconductor. The nature of the
native rotational symmetry breaking field responsible for this preferential
orientation remains unknown. Here we report on experiments designed to
investigate the origin and magnitude of this symmetry breaking field. Our
results suggest that neither micron-scale surface roughness features nor the
precise symmetry of the quantum well potential confining the 2D system are
important factors. By combining tilted field transport measurements with
detailed self-consistent calculations we estimate that the native anisotropy
energy, whatever its origin, is typically ~ 1 mK per electron.Comment: Reference added, minor notational changes; final published versio
Magnetoroton instabilities and static susceptibilities in higher Landau levels
We present analytical results concerning the magneto-roton instability in
higher Landau levels evaluated in the single mode approximation. The roton gap
appears at a finite wave vector, which is approximately independent of the LL
index n, in agreement with numerical calculations in the composite-fermion
picture. However, a large maximum in the static susceptibility indicates a
charge density modulation with wave vectors , as
expected from Hartree-Fock predictions. We thus obtain a unified description of
the leading charge instabilities in all LLs.Comment: 4 pages, 5 figure
Role of disorder in half-filled high Landau levels
We study the effects of disorder on the quantum Hall stripe phases in
half-filled high Landau levels using exact numerical diagonalization. We show
that, in the presence of weak disorder, a compressible, striped charge density
wave, becomes the true ground state. The projected electron density profile
resembles that of a smectic liquid. With increasing disorder strength W, we
find that there exists a critical value, W_c \sim 0.12 e^2/\epsilon l, where a
transition/crossover to an isotropic phase with strong local electron density
fluctuations takes place. The many-body density of states are qualitatively
distinguishable in these two phases and help elucidate the nature of the
transition.Comment: 4 pages, 4 figure
Anisotropic transport in unidirectional lateral superlattice around half-filling of the second Landau level
We have observed marked transport anisotropy in short period (a=92 nm)
unidirectional lateral superlattices around filling factors nu=5/2 and 7/2:
magnetoresistance shows a sharp peak for current along the modulation grating
while a dip appears for current across the grating. By altering the ratio a/l
(with l=sqrt{hbar/eB_perp} the magnetic length) via changing the electron
density n_e, it is shown that the nu=5/2 anisotropic features appear in the
range 6.6 alt a/l alt 7.2 varying their intensities, becoming most conspicuous
at a/l simeq 6.7. The peak/dip broadens with temperature roughly preserving its
height/depth up to 250 mK. Tilt experiments reveal that the structures are
slightly enhanced by an in-plane magnetic field B_| perpendicular to the
grating but are almost completely destroyed by B_| parallel to the grating. The
observations suggest the stabilization of a unidirectional charge-density-wave
or stripe phase by weak external periodic modulation at the second Landau
level.Comment: REVTeX, 5 pages, 3 figures, Some minor revisions, Added notes and
reference
Mean-field Phase Diagram of Two-Dimensional Electrons with Disorder in a Weak Magnetic Field
We study two-dimensional interacting electrons in a weak perpendicular
magnetic field with the filling factor and in the presence of a
quenched disorder. In the framework of the Hartree-Fock approximation, we
obtain the mean-field phase diagram for the partially filled highest Landau
level. We find that the CDW state can exist if the Landau level broadening
does not exceed the critical value .
Our analysis of weak crystallization corrections to the mean-field results
shows that these corrections are of the order of and
therefore can be neglected
Cancellation of nonrenormalizable hypersurface divergences and the d-dimensional Casimir piston
Using a multidimensional cut-off technique, we obtain expressions for the
cut-off dependent part of the vacuum energy for parallelepiped geometries in
any spatial dimension d. The cut-off part yields nonrenormalizable hypersurface
divergences and we show explicitly that they cancel in the Casimir piston
scenario in all dimensions. We obtain two different expressions for the
d-dimensional Casimir force on the piston where one expression is more
convenient to use when the plate separation a is large and the other when a is
small (a useful duality). The Casimir force on the piston is found
to be attractive (negative) for any dimension d. We apply the d-dimensional
formulas (both expressions) to the two and three-dimensional Casimir piston
with Neumann boundary conditions. The 3D Neumann results are in numerical
agreement with those recently derived in arXiv:0705.0139 using an optical path
technique providing an independent confirmation of our multidimensional
approach. We limit our study to massless scalar fields.Comment: 29 pages; 3 figures; references added; to appear in JHE
Theory of the Quantum Hall Smectic Phase II: Microscopic Theory
We present a microscopic derivation of the hydrodynamic theory of the Quantum
Hall smectic or stripe phase of a two-dimensional electron gas in a large
magnetic field. The effective action of the low energy is derived here from a
microscopic picture by integrating out high energy excitations with a scale of
the order the cyclotron energy.The remaining low-energy theory can be expressed
in terms of two canonically conjugate sets of degrees of freedom: the
displacement field, that describes the fluctuations of the shapes of the
stripes, and the local charge fluctuations on each stripe.Comment: 20 pages, RevTex, 3 figures, second part of cond-mat/0105448 New and
improved Introduction. Final version as it will appear in Physical Review
Stripes in Quantum Hall Double Layer Systems
We present results of a study of double layer quantum Hall systems in which
each layer has a high-index Landau level that is half-filled. Hartree-Fock
calculations indicate that, above a critical layer separation, the system
becomes unstable to the formation of a unidirectional coherent charge density
wave (UCCDW), which is related to stripe states in single layer systems. The
UCCDW state supports a quantized Hall effect when there is tunneling between
layers, and is {\it always} stable against formation of an isotropic Wigner
crystal for Landau indices . The state does become unstable to the
formation of modulations within the stripes at large enough layer separation.
The UCCDW state supports low-energy modes associated with interlayer coherence.
The coherence allows the formation of charged soliton excitations, which become
gapless in the limit of vanishing tunneling. We argue that this may result in a
novel {\it ``critical Hall state''}, characterized by a power law in
tunneling experiments.Comment: 10 pages, 8 figures include
- …
