2,714 research outputs found
Evaluating prediction systems in software project estimation
This is the Pre-print version of the Article - Copyright @ 2012 ElsevierContext: Software engineering has a problem in that when we empirically evaluate competing prediction systems we obtain conflicting results.
Objective: To reduce the inconsistency amongst validation study results and provide a more formal foundation to interpret results with a particular focus on continuous prediction systems.
Method: A new framework is proposed for evaluating competing prediction systems based upon (1) an unbiased statistic, Standardised Accuracy, (2) testing the result likelihood relative to the baseline technique of random ‘predictions’, that is guessing, and (3) calculation of effect sizes.
Results: Previously published empirical evaluations of prediction systems are re-examined and the original conclusions shown to be unsafe. Additionally, even the strongest results are shown to have no more than a medium effect size relative to random guessing.
Conclusions: Biased accuracy statistics such as MMRE are deprecated. By contrast this new empirical validation framework leads to meaningful results. Such steps will assist in performing future meta-analyses and in providing more robust and usable recommendations to practitioners.Martin Shepperd was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/H050329
How reliable are systematic reviews in empirical software engineering?
BACKGROUND – the systematic review is becoming a more commonly employed research instrument in
empirical software engineering. Before undue reliance is placed on the outcomes of such reviews it would seem useful to consider the robustness of the approach in this particular research context.
OBJECTIVE – the aim of this study is to assess the reliability of systematic reviews as a research instrument. In particular we wish to investigate the consistency of process and the stability of outcomes.
METHOD – we compare the results of two independent reviews under taken with a common research question.
RESULTS – the two reviews find similar answers to the research question, although the means of arriving at those answers vary.
CONCLUSIONS – in addressing a well-bounded research question, groups of researchers with similar domain experience can arrive at the same review outcomes, even though they may do so in different ways.
This provides evidence that, in this context at least, the systematic review is a robust research method
Integrate the GM(1,1) and Verhulst models to predict software stage effort
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Software effort prediction clearly plays a crucial role in software project management. In keeping with more dynamic approaches to software development, it is not sufficient to only predict the whole-project effort at an early stage. Rather, the project manager must also dynamically predict the effort of different stages or activities during the software development process. This can assist the project manager to reestimate effort and adjust the project plan, thus avoiding effort or schedule overruns. This paper presents a method for software physical time stage-effort prediction based on grey models GM(1,1) and Verhulst. This method establishes models dynamically according to particular types of stage-effort sequences, and can adapt to particular development methodologies automatically by using a novel grey feedback mechanism. We evaluate the proposed method with a large-scale real-world software engineering dataset, and compare it with the linear regression method and the Kalman filter method, revealing that accuracy has been improved by at least 28% and 50%, respectively. The results indicate that the method can be effective and has considerable potential. We believe that stage predictions could be a useful complement to whole-project effort prediction methods.National Natural Science Foundation of
China and the Hi-Tech Research
and Development Program of Chin
3D-printed Acoustic Directional Couplers
Acoustic Directional Couplers permit separation of forward and reverse sound pressure waves. This separation opens the way to traceable precision acoustic reflection measurements. In order to span the audio frequency range, multiple couplers will be required, as each operates over a frequency range of slightly more than one octave. To reach 20kHz or above requires vary small, mechanically precise construction. We achieve this by 3D printing techniques. We manufactured two otherwise-identical couplers, one made with a powder-type 3D printer with photopolymer support structure, the other made with an ABS-filament thermoplastic-type 3D printer. We compare the measured acoustic performance of these two couplers. The wavelength of sound at 20 kHz is comparable to that encountered at a microwave frequency of 18 GHz. We expect to be able to fabricate couplers that reach 55 kHz where the wavelength is 6 mm, corresponding to a frequency of 50 GHz in the electromagnetic spectrum
Relating IS Developers’ Attitudes to Engagement
Increasing effort is being directed to understanding the personality profiles of highly engaged information systems (IS) developers and the impact of such profiles on development outcomes. However, there has been a lesser degree of attention paid to studying attitudes at a fine-grained level, and relating such attitudes to developers’ in-process activities, in spite of the fact that social motivation theory notes the importance of such a relationship in general group work. We have therefore applied linguistic analysis, text mining and visualization, and statistical analysis techniques to artefacts developed by 474 developers to study these issues. Our results indicate that our sample of IS developers conveyed a range of attitudes while working to deliver systems features, and those practitioners who communicated the most were also the most engaged. Additionally, of eight linguistic dimensions considered, expressions regarding work and achievement, as well as insightful attitudes, were most closely related to developers’ engagement. Accordingly, team diversity and the provision of active support for outcome-driven developers may contribute positively to maintaining team balance and performance
POLIQUIN, Laurent (2008) La Métisse filante, Paris, L’Harmattan, 70 p. [ISBN: 978-2-296-05980-1]
What accuracy statistics really measure
Provides the software estimation research community with a better understanding of the meaning of, and relationship between, two statistics that are often used to assess the accuracy of predictive models: the mean magnitude relative error (MMRE) and the number of predictions within 25% of the actual, pred(25). It is demonstrated that MMRE and pred(25) are, respectively, measures of the spread and the kurtosis of the variable z, where z=estimate/actual. Thus, z is considered to be a measure of accuracy, and statistics such as MMRE and pred(25) to be measures of properties of the distribution of z. It is suggested that measures of the central location and skewness of z, as well as measures of spread and kurtosis, are necessary. Furthermore, since the distribution of z is non-normal, non-parametric measures of these properties may be needed. For this reason, box-plots of z are useful alternatives to simple summary metrics. It is also noted that the simple residuals are better behaved than the z variable, and could also be used as the basis for comparing prediction system
Understanding Class-level Testability Through Dynamic Analysis
It is generally acknowledged that software testing is both challenging and time-consuming. Understanding the factors that may positively or negatively affect testing effort will point to possibilities for reducing this effort. Consequently there is a significant body of research that has investigated relationships between static code properties and testability. The work reported in this paper complements this body of research by providing an empirical evaluation of the degree of association between runtime properties and class-level testability in object-oriented (OO) systems. The motivation for the use of dynamic code properties comes from the success of such metrics in providing a more complete insight into the multiple dimensions of software quality. In particular, we investigate the potential relationships between the runtime characteristics of production code, represented by Dynamic Coupling and Key Classes, and internal class-level testability. Testability of a class is consider ed here at the level of unit tests and two different measures are used to characterise those unit tests. The selected measures relate to test scope and structure: one is intended to measure the unit test size, represented by test lines of code, and the other is designed to reflect the intended design, represented by the number of test cases. In this research we found that Dynamic Coupling and Key Classes have significant correlations with class-level testability measures. We therefore suggest that these properties could be used as indicators of class-level testability. These results enhance our current knowledge and should help researchers in the area to build on previous results regarding factors believed to be related to testability and testing. Our results should also benefit practitioners in future class testability planning and maintenance activities
- …
