119 research outputs found
Short-range correlations in two-nucleon knockout reactions
A theory of short-range correlations in two-nucleon removal due to elastic
breakup (diffraction dissociation) on a light target is developed. Fingerprints
of these correlations will appear in momentum distributions of back-to-back
emission of the nucleon pair. Expressions for the momentum distributions are
derived and calculations for reactions involving stable and unstable nuclear
species are performed. The signature of short-range correlations in other
reaction processes is also studied.Comment: Nuclear Physics A, in pres
Tensor Correlations Measured in 3He(e,e'pp)n
We have measured the 3He(e,e'pp)n reaction at an incident energy of 4.7 GeV
over a wide kinematic range. We identified spectator correlated pp and pn
nucleon pairs using kinematic cuts and measured their relative and total
momentum distributions. This is the first measurement of the ratio of pp to pn
pairs as a function of pair total momentum, . For pair relative
momenta between 0.3 and 0.5 GeV/c, the ratio is very small at low and
rises to approximately 0.5 at large . This shows the dominance of
tensor over central correlations at this relative momentum.Comment: 4 pages, 4 figures, submitted to PR
Filamentous giant Beggiatoaceae from the Guaymas Basin are capable of both denitrification and dissimilatory nitrate reduction to ammonium
Filamentous large sulfur-oxidizing bacteria (FLSB) of the family Beggiatoaceae are globally distributed aquatic bacteria that can control geochemical fluxes from the sediment to the water column through their metabolic activity. FLSB mats from hydrothermal sediments of Guaymas Basin, Mexico, typically have a "fried-egg" appearance, with orange filaments dominating near the center and wider white filaments at the periphery, likely reflecting areas of higher and lower sulfide fluxes, respectively. These FLSB store large quantities of intracellular nitrate that they use to oxidize sulfide. By applying a combination of 15N-labeling techniques and genome sequence analysis, we demonstrate that the white FLSB filaments were capable of reducing their intracellular nitrate stores to both nitrogen gas and ammonium by denitrification and dissimilatory nitrate reduction to ammonium (DNRA), respectively. On the other hand, our combined results show that the orange filaments were primarily capable of DNRA. Microsensor profiles through a laboratory-incubated white FLSB mat revealed a 2- to 3-mm vertical separation between the oxic and sulfidic zones. Denitrification was most intense just below the oxic zone, as shown by the production of nitrous oxide following exposure to acetylene, which blocks nitrous oxide reduction to nitrogen gas. Below this zone, a local pH maximum coincided with sulfide oxidation, consistent with nitrate reduction by DNRA. The balance between internally and externally available electron acceptors (nitrate) and electron donors (reduced sulfur) likely controlled the end product of nitrate reduction both between orange and white FLSB mats and between different spatial and geochemical niches within the white FLSB mat
Stellar activity cycles and contribution of the deep layers knowledge
It is believed that magnetic activity on the Sun and solar-type stars are
tightly related to the dynamo process driven by the interaction between
rotation, convection, and magnetic field. However, the detailed mechanisms of
this process are still incompletely understood. Many questions remain
unanswered, e.g.: why some stars are more active than others?; why some stars
have a flat activity?; why is there a Maunder minimum?; are all the cycles
regular? A large number of prox- ies are typically used to study the magnetic
activity of stars as we cannot resolve stellar discs. Recently, it was shown
that asteroseismology can also be used to study stellar activity, making it an
even more powerful tool. If short cycles are not so un- common, we expect to
detect many of them with missions such as CoRoT, Kepler, and possibly the PLATO
mission. We will review some of the latest results obtained with spectroscopic
measurements. We will show how asteroseismology can help us to better
understand the complex process of dynamo and illustrate how the CoRoT and
Kepler missions are revolutionizing our knowledge on stellar activity. A new
window is being opened over our understanding of the magnetic variability of
stars.Comment: 7 pages. To appear in Astrophysics and Space Science Proceedings
series of the 20th Stellar pulsation conference held in Granada (Spain) from
6 to 10 September 2011
Dias ao Parto de Fêmeas Nelore de um Experimento de Seleção para Crescimento: I - Modelo de Repetibilidade
Structure of the solar photosphere studied from the radiation hydrodynamics code ANTARES
Strangeness Suppression of q(q)over-bar Creation Observed in Exclusive Reactions
We measured the ratios of electroproduction cross-sections from a proton
target for three exclusive meson-baryon final states: , ,
and , with the CLAS detector at Jefferson Lab. Using a simple model of
quark hadronization we extract q-qbar creation probabilities for the first time
in exclusive two-body production, in which only a single q-qbar pair is
created. We observe a sizable suppression of strange quark-antiquark pairs
compared to non-strange pairs, similar to that seen in high-energy production.Comment: 5pages, 2figure
Beam-target helicity asymmetry e in K0 Λ and K0 Σ0 photoproduction on the neutron
We report the first measurements of the E beam-target helicity asymmetry for the γ - n - →K0Λ and K0Σ0 channels in the energy range 1.70≤W≤2.34 GeV. The CLAS system at Jefferson Lab uses a circularly polarized photon beam and a target consisting of longitudinally polarized solid molecular hydrogen deuteride with low background contamination for the measurements. The multivariate analysis method boosted decision trees is used to isolate the reactions of interest. Comparisons with predictions from the KaonMAID, SAID, and Bonn-Gatchina models are presented. These results will help separate the isospin I=0 and I=1 photocoupling transition amplitudes in pseudoscalar meson photoproduction
First measurement of the polarization observable E in the p→(γ→,π<sup>+</sup>)n reaction up to 2.25 GeV
First results from the longitudinally polarized frozen-spin target (FROST)
program are reported. The double-polarization observable E, for the reaction
, has been measured using a circularly polarized
tagged-photon beam, with energies from 0.35 to 2.37 GeV. The final-state pions
were detected with the CEBAF Large Acceptance Spectrometer in Hall B at the
Thomas Jefferson National Accelerator Facility. These polarization data agree
fairly well with previous partial-wave analyses at low photon energies. Over
much of the covered energy range, however, significant deviations are observed,
particularly in the high-energy region where high-L multipoles contribute. The
data have been included in new multipole analyses resulting in updated nucleon
resonance parameters. We report updated fits from the Bonn-Gatchina, J\"ulich,
and SAID groups.Comment: 6 pages, 3 figure
- …
