8,485 research outputs found

    Progress toward a cosmic dust collection facility on space station

    Get PDF
    Scientific and programmatic progress toward the development of a cosmic dust collection facility (CDCF) for the proposed space station is documented. Topics addressed include: trajectory sensor concepts; trajectory accuracy and orbital evolution; CDCF pointing direction; development of capture devices; analytical techniques; programmatic progress; flight opportunities; and facility development

    High energy particles accelerated during the large solar flare of 1990 May 24: X/γ-ray observations

    Get PDF
    The PHEBUS experiment aboard GRANAT observed γ-ray line emission and γ-ray continuum above 10 MeV from the 24 May, 1990 solar flare. Observations and interpretation of the high-energy continuum have been discussed previously. Here we re-examine these, combining the PHEBUS observations above 10 MeV with calculations of the pion decay continuum to quantitatively constrain the accelerated ion energy distribution at energies above 300 MeV. The uncertainty in the determination of the level of the primary electron bremsstrahlung as well as the lack of measurements on the γ-ray emission above 100 MeV combine to allow rather a wide range of energy distribution parameters (in terms of the number of protons above 30 MeV, the spectral index of the proton distribution and the high energy cut-off of the energetic protons). Nevertheless we are able to rule out some combinations of these parameters. Using the additional information provided by the γ-ray line observations we discuss whether it is possible to construct a consistent picture of the ions which are accelerated in a wide energy range during this flare. Our findings are discussed with respect to previous works on the spectrum of energetic protons in the 10 MeV to GeV energy range

    Mobility of antimony, arsenic and lead at a former mine, Glendinning, Scotland

    Get PDF
    Elevated concentrations of antimony (Sb), arsenic (As) and lead (Pb) in upland organic-rich soils have resulted from past Sb mining activities at Glendinning, southern Scotland. Transfer of these elements into soil porewaters was linked to the production and leaching of dissolved organic matter and to leaching of spoil material. Sb was predominantly present in truly dissolved (< 3 kDa) forms whilst As and Pb were more commonly associated with large Fe-rich/organic colloids. The distinctive porewater behaviour of Sb accounts for its loss from deeper sections of certain cores and its transport over greater distances down steeper sections of the catchment. Although Sb and As concentrations decreased with increasing distance down a steep gully from the main spoil heap, elevated concentrations (~ 6-8 and 13-20 μg L− 1, respectively) were detected in receiving streamwaters. Thus, only partial attenuation occurs in steeply sloping sections of mining-impacted upland organic-rich soils and so spoil-derived contamination of surface waters may continue over time periods of decades to centuries

    Strategies for producing biochars with minimum PAH contamination

    Get PDF
    With the aim to develop initial recommendations for production of biochars with minimal contamination with polycyclic aromatic hydrocarbons (PAHs), we analysed a systematic set of 46 biochars produced under highly controlled pyrolysis conditions. The effects of the highest treatment temperature (HTT), residence time, carrier gas flow and typical feedstocks (wheat / oilseed rape straw pellets (WSP), softwood pellets (SWP)) on 16 US EPA PAH concentration in biochar were investigated. Overall, the PAH concentrations ranged between 1.2 and 100 mg kg-1. On average, straw-derived biochar contained 5.8 times higher PAH concentrations than softwood-derived biochar. In a batch pyrolysis reactor, increasing carrier gas flow significantly decreased PAH concentrations in biochar; in case of straw, the concentrations dropped from 43.1 mg kg-1 in the absence of carrier gas to 3.5 mg kg-1 with a carrier gas flow of 0.67 L min-1; for woody biomass PAHs concentrations declined from 7.4 mg kg-1 to 1.5 mg kg-1 with the same change of carrier gas flow. In the temperature range of 350-650°C the HTT did not have any significant effect on PAH content in biochars, irrespective of feedstock type, however, in biochars produced at 750°C the PAH concentrations were significantly higher. After detailed investigation it was deduced that this intensification in PAH contamination at high temperatures was most likely down to the specifics of the unit design of the continuous pyrolysis reactor used. Overall, it was concluded that besides PAH formation, vaporisation is determining the PAH concentration in biochar. The fact that both of these mechanisms intensify with pyrolysis temperature (one increasing and the other one decreasing the PAH concentration in biochar) could explain why no consistent trend in PAH content in biochar with temperature has been found in the literature

    Comparative Analysis of Non-thermal Emissions and Study of Electron Transport in a Solar Flare

    Full text link
    We study the non-thermal emissions in a solar flare occurring on 2003 May 29 by using RHESSI hard X-ray (HXR) and Nobeyama microwave observations. This flare shows several typical behaviors of the HXR and microwave emissions: time delay of microwave peaks relative to HXR peaks, loop-top microwave and footpoint HXR sources, and a harder electron energy distribution inferred from the microwave spectrum than from the HXR spectrum. In addition, we found that the time profile of the spectral index of the higher-energy (\gsim 100 keV) HXRs is similar to that of the microwaves, and is delayed from that of the lower-energy (\lsim 100 keV) HXRs. We interpret these observations in terms of an electron transport model called {\TPP}. We numerically solved the spatially-homogeneous {\FP} equation to determine electron evolution in energy and pitch-angle space. By comparing the behaviors of the HXR and microwave emissions predicted by the model with the observations, we discuss the pitch-angle distribution of the electrons injected into the flare site. We found that the observed spectral variations can qualitatively be explained if the injected electrons have a pitch-angle distribution concentrated perpendicular to the magnetic field lines rather than isotropic distribution.Comment: 32 pages, 12 figures, accepted for publication in The Astronomical Journa

    Inverse Compton X-rays from relativistic flare electrons and positrons

    Get PDF
    <p><b>Context:</b> In solar flares, inverse Compton scattering (ICS) of photospheric photons might give rise to detectable hard X-ray photon fluxes from the corona where ambient densities are too low for significant bremsstrahlung or recombination. γ-ray lines and continuum in some large flares imply the presence of the necessary ~100 MeV electrons and positrons, the latter as by-products of GeV energy ions. Recent observations of coronal hard X-ray sources in particular prompt us to reconsider here the possible contribution of ICS.</p> <p><b>Aims:</b> We aim to evaluate the ICS X-ray fluxes to be expected from prescribed populations of relativistic electrons and positrons in the solar corona. The ultimate aim is to determine if ICS coronal X-ray sources might offer a new diagnostic window on relativistic electrons and ions in flares.</p> <p><b>Methods:</b> We use the complete formalism of ICS to calculate X-ray fluxes from possible populations of flare primary electrons and secondary positrons, paying attention to the incident photon angular distribution near the solar surface and thus improving on the assumption of isotropy made in previous solar discussions.</p> <p><b>Results:</b> Both primary electrons and secondary positrons produce very hard ICS X-ray spectra. The anisotropic primary radiation field results in pronounced centre-to-limb variation in predicted fluxes and spectra, with the most intense spectra, extending to the highest photon energies, expected from limb flares. Acceptable numbers of electrons or positrons could account for RHESSI coronal X/γ-ray sources.</p> <p><b>Conclusions:</b> Some coronal X-ray sources at least might be interpreted in terms of ICS by relativistic electrons or positrons, particularly when sources appear at such low ambient densities that bremsstrahlung appears implausible.</p&gt
    corecore