894 research outputs found
Endocrinology: Nuclear maturity and oocyte morphology after stimulation with highly purified follicle stimulating hormone compared to human menopausal gonadotrophin
Several studies have shown that high concentrations of luteinizing hormone (LH) in the follicular phase of stimulation can have a negative effect on oocyte quality, pregnancy rate and incidence of miscarriage. The aim of the present study was to examine the effects of highly purified follicle stimulating hormone (FSH HP) on ovarian stimulation and particularly on nuclear maturity and morphological appearance of the oocyte in intracytoplasmic sperm injection (ICSI) therapy and to compare the results with human menopausal gonadotrophin (HMG) stimulation. For this purpose, 50 patients for ICSI (HMG: 30; FSH HP: 20) and 26 patients for in-vitro fertilization (TVF; HMG: 14, FSH HP: 12) were stimulated with either HMG of FSH HP using a short-term protocol. Patients were divided into the two groups according to the first letter of their family name. No differences were observed among the groups in relation to patient age, duration of stimulation, number of aspirated oocytes or maturity of the oocyte-cumulus complex. After removal of the cumulus-corona cells in the ICSI oocytes, a significantly higher proportion of oocytes in the FSH HP group were nuclear mature (metaphase II) than in the HMG group (FSH HP: 88.8%, HMG: 80.6%; P = 0.009). Furthermore, in the FSH HP group, significantly fewer oocytes with dark cytoplasm were observed (FSH HP: 14.4%, HMG: 22.4%; P = 0.02). Fertilization, cleavage and pregnancy rates (FSH HP 38%, HMG: 34% per retrieval) were comparable in both groups. Based on the results obtained, it can be concluded that the short-term FSH HP treatment protocol synchronizes oocyte maturation better than comparable stimulation with HM
Abnormal chromosomal arrangements in human oocytes
Ninety-one human oocytes, lacking signs of fertilization 50 h after insemination in vitro, were investigated cytogenetically to assess the frequency and type of chromosomal abnormalities. Chromosome spreading permitted adequate karyotyping in 55 oocytes. Non-determined numerical aberrations occurred with the following frequencies: hypohaploidy, 10.9% (6/55), hyperhapJoidy, 14.5% (8/55) and hyperdiploidy, 3.6% (2/55). Total aneuploidy occurred with a frequency of 29.1% and was observed in oocytes from 30 patients. No correlation was found between specific chromosomal aberrations and type of infertility, stimulation treatment or gonadotrophin levels. On the other hand, the frequency of aneuploidy was significantly higher (P 35 years of age. Two chromosomal complements (3.6%) had structural rearrangements; one oocyte had both structural and numerical chromosomal abnormalities and the other had differently condensed regions on the long arms of three chromosomes from group C. The overall frequency of chromosomal aberrations was 32.7%. Only two samples contained an additional set of polar body chromosomes. Thirteen oocytes presented sperm chromosomes in an arrested stage of premature chromosome condensation of the G1, phase and four oocytes showed asynchronous condensation of pronuclear chromosomes. Finally, it was concluded that the high proportion of chromosomal aberrations observed in human oocytes may contribute significantly to abnormal embryonic development in vitr
Identification of nitric oxide synthase in human and bovine oviduct
Nitric oxide synthase (NOS) is responsible for the biological production of nitric oxide (NO) in several organs. NOS activity has also been localized in the reproductive tract, although direct evidence for its presence in the human or bovine oviduct is still lacking. In the present study, four different techniques were used to identify the presence of NOS activity in human (n = 11) and bovine (n = 9) oviduct: (i) conversion of [3H]-L-arginine to [3H]-L-citrulline; (ii) production of nitrite/nitrate (NO2/NO3; stable NO metabolites); (iii) identification of NADPH-diaphorase activity; and (iv) immunostaining with antiserum to endothelial NOS. Cytosolic extracts from human ampullary segments of the Fallopian tube, obtained from post-partum patients (n = 4), converted [3H]-L-arginine to [3H]-L-citrulline (21.0 ± 8.8 fmol/mg protein/min). This conversion rate was significantly (P <0.05) reduced in the presence of either EDTA or N-monomethyl-L-arginine monoacetate (L-NMMA), an inhibitor of NOS activity. When bovine (n = 3) ampullary segments were incubated for 36 h in Hanks' balanced salt solution, the concentration of NO2/NO3 in the medium was increased (P <0.05) if segments were pretreated with lipopolysaccharide (LPS; an inducer of inducible NOS), but not after treatment with LPS + L-NMMA. Additionally, epithelial cells cultured from ampullary segments showed positive staining both for NADPH-diaphorase activity and with antiserum to endothelial NOS. The results of the present study provide direct evidence for the presence of both the Ca2+ -dependent constitutive form of NOS, as well as the inducible form of NOS activity in human and bovine oviduct. Since the oviduct plays a key role in the reproductive process, it is possible that the two forms of NOS may be involved in the physiological regulation of oviduct functio
Stretching the Rules: Monocentric Chromosomes with Multiple Centromere Domains
The centromere is a functional chromosome domain that is essential for faithful chromosome segregation during cell division and that can be reliably identified by the presence of the centromere-specific histone H3 variant CenH3. In monocentric chromosomes, the centromere is characterized by a single CenH3-containing region within a morphologically distinct primary constriction. This region usually spans up to a few Mbp composed mainly of centromere-specific satellite DNA common to all chromosomes of a given species. In holocentric chromosomes, there is no primary constriction; the centromere is composed of many CenH3 loci distributed along the entire length of a chromosome. Using correlative fluorescence light microscopy and high-resolution electron microscopy, we show that pea (Pisum sativum) chromosomes exhibit remarkably long primary constrictions that contain 3-5 explicit CenH3-containing regions, a novelty in centromere organization. In addition, we estimate that the size of the chromosome segment delimited by two outermost domains varies between 69 Mbp and 107 Mbp, several factors larger than any known centromere length. These domains are almost entirely composed of repetitive DNA sequences belonging to 13 distinct families of satellite DNA and one family of centromeric retrotransposons, all of which are unevenly distributed among pea chromosomes. We present the centromeres of Pisum as novel ``meta-polycentric'' functional domains. Our results demonstrate that the organization and DNA composition of functional centromere domains can be far more complex than previously thought, do not require single repetitive elements, and do not require single centromere domains in order to segregate properly. Based on these findings, we propose Pisum as a useful model for investigation of centromere architecture and the still poorly understood role of repetitive DNA in centromere evolution, determination, and function
In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae
The differential accumulation and elimination of repetitive DNA are key drivers of genome size variation in flowering plants, yet there have been few studies which have analysed how different types of repeats in related species contribute to genome size evolution within a phylogenetic context. This question is addressed here by conducting large-scale comparative analysis of repeats in 23 species from four genera of the monophyletic legume tribe Fabeae, representing a 7.6-fold variation in genome size. Phylogenetic analysis and genome size reconstruction revealed that this diversity arose from genome size expansions and contractions in different lineages during the evolution of Fabeae. Employing a combination of low-pass genome sequencing with novel bioinformatic approaches resulted in identification and quantification of repeats making up 55-83% of the investigated genomes. In turn, this enabled an analysis of how each major repeat type contributed to the genome size variation encountered. Differential accumulation of repetitive DNA was found to account for 85% of the genome size differences between the species, and most (57%) of this variation was found to be driven by a single lineage of Ty3/gypsy LTR-retrotransposons, the Ogre elements. Although the amounts of several other lineages of LTR-retrotransposons and the total amount of satellite DNA were also positively correlated with genome size, their contributions to genome size variation were much smaller (up to 6%). Repeat analysis within a phylogenetic framework also revealed profound differences in the extent of sequence conservation between different repeat types across Fabeae. In addition to these findings, the study has provided a proof of concept for the approach combining recent developments in sequencing and bioinformatics to perform comparative analyses of repetitive DNAs in a large number of non-model species without the need to assemble their genomes
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
First measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814
International audienceWe present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Swine manure management by hydrothermal carbonization: comparative study of batch and continuous operation
Hydrothermal carbonization (HTC) is considered a promising technology for biomass waste management
without pre-drying. This study explores the potential for swine manure management by comparing batch and
continuous processes, emphasizing the benefits of the continuous mode, particularly for its potential full-scale
application. The continuous process at low temperature (180 ◦C) resulted in a hydrochar with a lower degree
of carbonization compared to the batch process, but similar characteristics were found in both hydrochars at
higher operating temperatures (230–250 ◦C), such as C content (~ 52 wt%), fixed carbon (~ 24 wt%) and higher
calorific value (21 MJ kg− 1
). Thermogravimetric and combustion analyses showed that hydrochars exhibited
characteristics suitable as solid biofuels for industrial use. The process water showed a high content of organic
matter as soluble chemical oxygen demand (7–22 g L− 1
) and total organic carbon (4–10 g L− 1
), although a high
amount of refractory species such as N- and O-containing long aromatic compounds were detected in the process
water from the batch process, while the process water from the continuous process presented more easily
biodegradable compounds such as acids and alcohols, among others. The longer time required to reach operating
temperature in the case of the batch system (longer heating time to reach operating temperature) resulted in
lower H/C and O/C ratios compared to hydrochar from the continuous process. This indicates that the dehydration and decarboxylation reactions of the feedstock play a more important role in the batch process. This
study shows the efficiency of the continuous process to obtain carbonaceous materials suitable for use as biofuel,
providing a solution for swine manure managementAuthors greatly appreciate funding from Spanish MCIN/AEI/
10.13039/501100011033 and European Union "NextGenerationEU/
PRTR" (TED2021-130287B-I00, PDC 2021-120755-I00, and PID 2022-
138632OB-I00) and Grupo Kerbest Company. R.P. Ipiales acknowledges
the financial support from the Community of Madrid (IND2019/AMB17092) and Arquimea Agrotech Compan
- …
