2,970 research outputs found

    Two-Surface Wave Decay

    Full text link
    Using an analytical model we discuss the parametric excitation of pairs of electron surface waves (ESW) in the interaction of an ultrashort, intense laser pulse with an overdense plasma which has a step-like density profile. The ESWs can be excited either by the electric or by the magnetic part of the Lorentz force exerted by the laser and, correspondingly, have frequencies around ω/2\omega/2 or ω\omega, where ω\omega is the laser frequency.Comment: 4 EPS figures, Revte

    Laser ion acceleration using a solid target coupled with a low density layer

    Full text link
    We investigate by particle-in-cell simulations in two and three dimensions the laser-plasma interaction and the proton acceleration in multilayer targets where a low density "near-critical" layer of a few micron thickness is added on the illuminated side of a thin, high density layer. This target design can be obtained by depositing a "foam" layer on a thin metallic foil. The presence of the near-critical plasma strongly increases both the conversion efficiency and the energy of electrons and leads to enhanced acceleration of proton from a rear side layer via the Target Normal Sheath Acceleration mechanism. The electrons of the foam are strongly accelerated in the forward direction and propagate on the rear side of the target building up a high electric field with a relatively flat longitudinal profile. In these conditions the maximum proton energy is up to three times higher than in the case of the bare solid target.Comment: 9 pages, 11 figures. Submitted to Physical Review

    Two-surface wave decay: improved analytical theory and effects on electron acceleration

    Full text link
    Two-surface wave decay (TSWD), i.e. the parametric excitation of electron surface waves, was recently proposed as an absorption mechanism in the interaction of ultrashort, intense laser pulses with solid targets. We present an extension of the fluid theory of TSWD to a warm plasma which treats boundary effects consistently. We also present test-particle simulations showing localized enhancement of electron acceleration by TSWD fields; this effect leads to a modulation of the current density entering into the target and may seed current filamentation instabilities.Comment: 4 figures, submitted to Appl.Phys.B (special issue from HFSW X conference, Biarritz, France, Oct 12-15 2003); slightly revised tex

    Electric field dynamics and ion acceleration in the self-channeling of a superintense laser pulse

    Full text link
    The dynamics of electric field generation and radial acceleration of ions by a laser pulse of relativistic intensity propagating in an underdense plasma has been investigated using an one-dimensional electrostatic, ponderomotive model developed to interpret experimental measurements of electric fields [S. Kar et al, New J. Phys. *9*, 402 (2007)]. Ions are spatially focused at the edge of the charge-displacement channel, leading to hydrodynamical breaking, which in turns causes the heating of electrons and an "echo" effect in the electric field. The onset of complete electron depletion in the central region of the channel leads to a smooth transition to a "Coulomb explosion" regime and a saturation of ion acceleration.Comment: 9 pages, 7 figures, final revised version, to appear on Plasma Phys. Contr. Fus., special issue on "Laser and Plasma Accelerators", scheduled for February, 200

    Widening use of dexamethasone implant for the treatment of macular edema

    Get PDF
    Sustained-release intravitreal 0.7 mg dexamethasone (DEX) implant is approved in Europe for the treatment of macular edema related to diabetic retinopathy, branch retinal vein occlusion, central retinal vein occlusion, and non-infectious uveitis. The implant is formulated in a biodegradable copolymer to release the active ingredient within the vitreous chamber for up to 6 months after an intravitreal injection, allowing a prolonged interval of efficacy between injections with a good safety profile. Various other ocular pathologies with inflammatory etio­pathogeneses associated with macular edema have been treated by DEX implant, including neovascular age-related macular degeneration, Irvine–Gass syndrome, vasoproliferative retinal tumors, retinal telangiectasia, Coats’ disease, radiation maculopathy, retinitis pigmentosa, and macular edema secondary to scleral buckling and pars plana vitrectomy. We undertook a review to provide a comprehensive collection of all of the diseases that benefit from the use of the sustained-release DEX implant, alone or in combination with concomitant therapies. A MEDLINE search revealed lack of randomized controlled trials related to these indications. Therefore we included and analyzed all available studies (retrospective and prospective, com­parative and non-comparative, randomized and nonrandomized, single center and multicenter, and case report). There are reports in the literature of the use of DEX implant across a range of macular edema-related pathologies, with their clinical experience supporting the use of DEX implant on a case-by-case basis with the aim of improving patient outcomes in many macular pathologies. As many of the reported macular pathologies are difficult to treat, a new treat­ment option that has a beneficial influence on the clinical course of the disease may be useful in clinical practice

    THERMODYNAMIC ORC CYCLE DESIGN OPTIMIZATION FOR MEDIUM-LOW TEMPERATURE ENERGY SOURCES

    Get PDF
    In the large spectrum of organic fluids suitable for Rankine cycles, a fluid that is already wellknown and available on industrial scale but currently excluded from this kind of application has been selected. This choice is due to the remarkable characteristics of the fluid, such as its high molecular weight, good thermal stability, non-flammability, and atoxicity. Compared to those fluids nowadays common in the ORC market, its thermodynamic properties and fluid dynamic behavior lead to a peculiar configuration of the cycle: • Supercritical cycle, when heat input is at medium-high temperature; • Massive regeneration, to obtain higher efficiency; • Low specific work of the turbine; • Relatively high volumetric expansion ratio and relatively low absolute inlet volumetric flow; Accordingly, an innovative cycle design has been developed, including a once-through Hairpin primary heat exchanger and a multi-stage radial outflow expander. This last innovative component has been designed to get the best performance with the chosen fluid: • The high inlet/outlet volumetric flow ratio is well combined with the change in cross section across the radius; • Compared to an axial turbine, the lower inlet volumetric flow is compensated by higher blades at the first stage. It is feasible thanks to the change in section available along the radius, so that there is no need for partial admission; • The prismatic blade leads to constant velocity diagrams across the blade span; • It minimizes tip leakages and disk friction losses, due to the single disk / multi-stage configuration; • The intrinsical limit of a radial outflow expander to develop high enthalpy drop is not relevant for this cycle, presenting itself a very low enthalpy drop. Moreover the tip speed is limited by the low speed of sound and consequently this kind of expander suits well with this cycle arrangement. The results of this study, conducted through thermodynamic simulations, CFD, stress analysis and economic optimization show an ORC system that reaches high efficiencies, comparable to those typical of existing system

    Particle acceleration and radiation friction effects in the filamentation instability of pair plasmas

    Full text link
    The evolution of the filamentation instability produced by two counter-streaming pair plasmas is studied with particle-in-cell (PIC) simulations in both one (1D) and two (2D) spatial dimensions. Radiation friction effects on particles are taken into account. After an exponential growth of both the magnetic field and the current density, a nonlinear quasi-stationary phase sets up characterized by filaments of opposite currents. During the nonlinear stage, a strong broadening of the particle energy spectrum occurs accompanied by the formation of a peak at twice their initial energy. A simple theory of the peak formation is presented. The presence of radiative losses does not change the dynamics of the instability but affects the structure of the particle spectra.Comment: 8 pages, 8 figures, submitted to MNRA

    Economic and environmental impact assessment through system dynamics of technology-enhanced maintenance services

    Get PDF
    This work presents an economic and environmental impact assessment of maintenance services in order to evaluate how they contribute to sustainable value creation through field service delivery supported by advanced technologies. To this end, systems dynamics is used to assist the prediction of economic and environmental impacts of maintenance services supported by the use of an e-maintenance platform implementing prognosis and health management. A special concern is given to the energy use and related carbon footprint as environmental impacts
    corecore