1,191 research outputs found
The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm.
The nephron is the basic structural and functional unit of the vertebrate kidney. It is composed of a glomerulus, the site of ultrafiltration, and a renal tubule, along which the filtrate is modified. Although widely regarded as a vertebrate adaptation, 'nephron-like' features can be found in the excretory systems of many invertebrates, raising the possibility that components of the vertebrate excretory system were inherited from their invertebrate ancestors. Here we show that the insect nephrocyte has remarkable anatomical, molecular and functional similarity to the glomerular podocyte, a cell in the vertebrate kidney that forms the main size-selective barrier as blood is ultrafiltered to make urine. In particular, both cell types possess a specialized filtration diaphragm, known as the slit diaphragm in podocytes or the nephrocyte diaphragm in nephrocytes. We find that fly (Drosophila melanogaster) orthologues of the major constituents of the slit diaphragm, including nephrin, NEPH1 (also known as KIRREL), CD2AP, ZO-1 (TJP1) and podocin, are expressed in the nephrocyte and form a complex of interacting proteins that closely mirrors the vertebrate slit diaphragm complex. Furthermore, we find that the nephrocyte diaphragm is completely lost in flies lacking the orthologues of nephrin or NEPH1-a phenotype resembling loss of the slit diaphragm in the absence of either nephrin (as in human congenital nephrotic syndrome of the Finnish type, NPHS1) or NEPH1. These changes markedly impair filtration function in the nephrocyte. The similarities we describe between invertebrate nephrocytes and vertebrate podocytes provide evidence suggesting that the two cell types are evolutionarily related, and establish the nephrocyte as a simple model in which to study podocyte biology and podocyte-associated diseases.This work was supported by Wellcome Trust
grants awarded to H.S. (072441 and 079221, H.W., B.D., H.S.); Deutsche Forschungsgemeinschaft (SFB 590) awarded
to Elisabeth Knust (F.G.), ARC 1242 (H.W., B.D., H.S., F.G.); MEC grant awarded to M.R-G. (BFU2007-62201,
S.P-S., M.R-G.); Fundación Ramón Areces grant to the CBMSO (M.R-G.); EC grant LSHG-CT-2004-511978 to
MYORES (M.R-G.); an FPU fellowship from the MEC awarded to A.G-L.Peer reviewe
Stem Cell-Based Tissue-Engineered Laryngeal Replacement.
Patients with laryngeal disorders may have severe morbidity relating to swallowing, vocalization, and respiratory function, for which conventional therapies are suboptimal. A tissue-engineered approach would aim to restore the vocal folds and maintain respiratory function while limiting the extent of scarring in the regenerated tissue. Under Good Laboratory Practice conditions, we decellularized porcine larynges, using detergents and enzymes under negative pressure to produce an acellular scaffold comprising cartilage, muscle, and mucosa. To assess safety and functionality before clinical trials, a decellularized hemilarynx seeded with human bone marrow-derived mesenchymal stem cells and a tissue-engineered oral mucosal sheet was implanted orthotopically into six pigs. The seeded grafts were left in situ for 6 months and assessed using computed tomography imaging, bronchoscopy, and mucosal brushings, together with vocal recording and histological analysis on explantation. The graft caused no adverse respiratory function, nor did it impact swallowing or vocalization. Rudimentary vocal folds covered by contiguous epithelium were easily identifiable. In conclusion, the proposed tissue-engineered approach represents a viable alternative treatment for laryngeal defects. Stem Cells Translational Medicine 2017;6:677-687
Characterization of Stem-Like Cells in Mucoepidermoid Tracheal Paediatric Tumor
Stem cells contribute to regeneration of tissues and organs. Cells with stem cell-like properties have been identified in tumors from a variety of origins, but to our knowledge there are yet no reports on tumor-related stem cells in the human upper respiratory tract. In the present study, we show that a tracheal mucoepidermoid tumor biopsy obtained from a 6 year-old patient contained a subpopulation of cells with morphology, clonogenicity and surface markers that overlapped with bone marrow mesenchymal stromal cells (BM-MSCs). These cells, designated as MEi (mesenchymal stem cell-like mucoepidermoid tumor) cells, could be differentiated towards mesenchymal lineages both with and without induction, and formed spheroids in vitro. The MEi cells shared several multipotent characteristics with BM-MSCs. However, they displayed differences to BM-MSCs in growth kinectics and gene expression profiles relating to cancer pathways and tube development. Despite this, the MEi cells did not possess in vivo tumor-initiating capacity, as proven by the absence of growth in situ after localized injection in immunocompromised mice. Our results provide an initial characterization of benign tracheal cancer-derived niche cells. We believe that this report could be of importance to further understand tracheal cancer initiation and progression as well as therapeutic development
Bioengineering thymus organoids to restore thymic function and induce donor-specific immune tolerance to allografts
One of the major obstacles in organ transplantation is to establish immune tolerance of allografts. Although immunosuppressive drugs can prevent graft rejection to a certain degree, their efficacies are limited, transient, and associated with severe side effects. Induction of thymic central tolerance to allografts remains challenging, largely because of the difficulty of maintaining donor thymic epithelial cells in vitro to allow successful bioengineering. Here, the authors show that three-dimensional scaffolds generated from decellularized mouse thymus can support thymic epithelial cell survival in culture and maintain their unique molecular properties. When transplanted into athymic nude mice, the bioengineered thymus organoids effectively promoted homing of lymphocyte progenitors and supported thymopoiesis. Nude mice transplanted with thymus organoids promptly rejected skin allografts and were able to mount antigen-specific humoral responses against ovalbumin on immunization. Notably, tolerance to skin allografts was achieved by transplanting thymus organoids constructed with either thymic epithelial cells coexpressing both syngeneic and allogenic major histocompatibility complexes, or mixtures of donor and recipient thymic epithelial cells. Our results demonstrate the technical feasibility of restoring thymic function with bioengineered thymus organoids and highlight the clinical implications of this thymus reconstruction technique in organ transplantation and regenerative medicine
Tissue-Engineered Solutions in Plastic and Reconstructive Surgery: Principles and Practice
Recent advances in microsurgery, imaging, and transplantation have led to significant refinements in autologous reconstructive options; however, the morbidity of donor sites remains. This would be eliminated by successful clinical translation of tissue-engineered solutions into surgical practice. Plastic surgeons are uniquely placed to be intrinsically involved in the research and development of laboratory engineered tissues and their subsequent use. In this article, we present an overview of the field of tissue engineering, with the practicing plastic surgeon in mind. The Medical Research Council states that regenerative medicine and tissue engineering "holds the promise of revolutionizing patient care in the twenty-first century." The UK government highlighted regenerative medicine as one of the key eight great technologies in their industrial strategy worthy of significant investment. The long-term aim of successful biomanufacture to repair composite defects depends on interdisciplinary collaboration between cell biologists, material scientists, engineers, and associated medical specialties; however currently, there is a current lack of coordination in the field as a whole. Barriers to translation are deep rooted at the basic science level, manifested by a lack of consensus on the ideal cell source, scaffold, molecular cues, and environment and manufacturing strategy. There is also insufficient understanding of the long-term safety and durability of tissue-engineered constructs. This review aims to highlight that individualized approaches to the field are not adequate, and research collaboratives will be essential to bring together differing areas of expertise to expedite future clinical translation. The use of tissue engineering in reconstructive surgery would result in a paradigm shift but it is important to maintain realistic expectations. It is generally accepted that it takes 20-30 years from the start of basic science research to clinical utility, demonstrated by contemporary treatments such as bone marrow transplantation. Although great advances have been made in the tissue engineering field, we highlight the barriers that need to be overcome before we see the routine use of tissue-engineered solutions
Humanized mice: are we there yet?
Animal models have been instrumental in increasing the understanding of human physiology, particularly immunity. However, these animal models have been limited by practical considerations and genetic diversity. The creation of humanized mice that carry partial or complete human physiological systems may help overcome these obstacles. The National Institute of Allergy and Infectious Diseases convened a workshop on humanized mouse models for immunity in Bethesda, MD, on June 13–14, 2005, during which researchers discussed the benefits and limitations of existing animal models and offered insights into the development of future humanized mouse models
Primary Ciliary Dyskinesia: An Update on Clinical Aspects, Genetics, Diagnosis, and Future Treatment Strategies
Primary ciliary dyskinesia (PCD) is an orphan disease (MIM 244400), autosomal recessive inherited, characterized by motile ciliary dysfunction. The estimated prevalence of PCD is 1:10,000 to 1:20,000 live-born children, but true prevalence could be even higher. PCD is characterized by chronic upper and lower respiratory tract disease, infertility/ectopic pregnancy, and situs anomalies, that occur in ≈50% of PCD patients (Kartagener syndrome), and these may be associated with congenital heart abnormalities. Most patients report a daily year-round wet cough or nose congestion starting in the first year of life. Daily wet cough, associated with recurrent infections exacerbations, results in the development of chronic suppurative lung disease, with localized-to-diffuse bronchiectasis. No diagnostic test is perfect for confirming PCD. Diagnosis can be challenging and relies on a combination of clinical data, nasal nitric oxide levels plus cilia ultrastructure and function analysis. Adjunctive tests include genetic analysis and repeated tests in ciliary culture specimens. There are currently 33 known genes associated with PCD and correlations between genotype and ultrastructural defects have been increasingly demonstrated. Comprehensive genetic testing may hopefully screen young infants before symptoms occur, thus improving survival. Recent surprising advances in PCD genetic designed a novel approach called "gene editing" to restore gene function and normalize ciliary motility, opening up new avenues for treating PCD. Currently, there are no data from randomized clinical trials to support any specific treatment, thus, management strategies are usually extrapolated from cystic fibrosis. The goal of treatment is to prevent exacerbations, slowing the progression of lung disease. The therapeutic mainstay includes airway clearance maneuvers mainly with nebulized hypertonic saline and chest physiotherapy, and prompt and aggressive administration of antibiotics. Standardized care at specialized centers using a multidisciplinary approach that imposes surveillance of lung function and of airway biofilm composition likely improves patients' outcome. Pediatricians, neonatologists, pulmonologists, and ENT surgeons should maintain high awareness of PCD and refer patients to the specialized center before sustained irreversible lung damage develops. The recent creation of a network of PCD clinical centers, focusing on improving diagnosis and treatment, will hopefully help to improve care and knowledge of PCD patients
Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells
yesThe gold standard substrate for the ex vivo expansion of human limbal stem cells (LSCs) remains the human amniotic membrane (HAM) but this is not a defined substrate and is subject to biological variabil-ity and the potential to transmit disease. To better define HAM and mitigate the risk of disease transmis-sion, we sought to determine if decellularisation and/or c-irradiation have an adverse effect on culture growth and LSC phenotype. Ex vivo limbal explant cultures were set up on fresh HAM, HAM decellularised with 0.5 M NaOH, and 0.5% (w/v) sodium dodecyl sulfate (SDS) with or without c-irradiation. Explant growth rate was measured and LSC phenotype was characterised by histology, immunostaining and qRT-PCR (ABCG2, DNp63, Ki67, CK12, and CK13). Ƴ-irradiation marginally stiffened HAM, as measured by Brillouin spectromicroscopy. HAM stiffness and c-irradiation did not significantly affect the LSC phe-notype, however LSCs expanded significantly faster on Ƴ-irradiated SDS decellularised HAM (p < 0.05) which was also corroborated by the highest expression of Ki67 and putative LSC marker, ABCG2. Colony forming efficiency assays showed a greater yield and proportion of holoclones in cells cultured on Ƴ-irradiated SDS decellularised HAM. Together our data indicate that SDS decellularised HAM may be a more efficacious substrate for the expansion of LSCs and the use of a c-irradiated HAM allows the user to start the manufacturing process with a sterile substrate, potentially making it safer
- …
