569 research outputs found
Angular Momentum Distribution Function of the Laughlin Droplet
We have evaluated the angular-momentum distribution functions for finite
numbers of electrons in Laughlin states. For very small numbers of electrons
the angular-momentum state occupation numbers have been evaluated exactly while
for larger numbers of electrons they have been obtained from Monte-Carlo
estimates of the one-particle density matrix. An exact relationship, valid for
any number of electrons, has been derived for the ratio of the occupation
numbers of the two outermost orbitals of the Laughlin droplet and is used to
test the accuracy of the MC calculations. We compare the occupation numbers
near the outer edges of the droplets with predictions based on the chiral
Luttinger liquid picture of Laughlin state edges and discuss the surprisingly
large oscillations in occupation numbers which occur for angular momenta far
from the edge.Comment: 11 pages of RevTeX, 2 figures available on request. IUCM93-00
Edge and Bulk of the Fractional Quantum Hall Liquids
An effective Chern-Simons theory for the Abelian quantum Hall states with
edges is proposed to study the edge and bulk properties in a unified fashion.
We impose a condition that the currents do not flow outside the sample. With
this boundary condition, the action remains gauge invariant and the edge modes
are naturally derived. We find that the integer coupling matrix should
satisfy the condition (: filling of Landau
levels, : the number of gauge fields ) for the quantum Hall liquids. Then
the Hall conductance is always quantized irrespective of the detailed dynamics
or the randomness at the edge.Comment: 13 pages, REVTEX, one figure appended as a postscript fil
Resonant Tunneling Between Quantum Hall Edge States
Resonant tunneling between fractional quantum Hall edge states is studied in
the Luttinger liquid picture. For the Laughlin parent states, the resonance
line shape is a universal function whose width scales to zero at zero
temperature. Extensive quantum Monte Carlo simulations are presented for which confirm this picture and provide a parameter-free prediction for the
line shape.Comment: 14 pages , revtex , IUCM93-00
The effect of inter-edge Coulomb interactions on the transport between quantum Hall edge states
In a recent experiment, Milliken {\em et al.} demonstrated possible evidence
for a Luttinger liquid through measurements of the tunneling conductance
between edge states in the quantum Hall plateau. However, at low
temperatures, a discrepancy exists between the theoretical predictions based on
Luttinger liquid theory and experiment. We consider the possibility that this
is due to long-range Coulomb interactions which become dominant at low
temperatures. Using renormalization group methods, we calculate the cross-over
behaviour from Luttinger liquid to the Coulomb interaction dominated regime.
The cross-over behaviour thus obtained seems to resolve one of the
discrepancies, yielding good agreement with experiment.Comment: 4 pages, RevTex, 2 postscript figures, tex file and figures have been
uuencode
Collective edge modes in fractional quantum Hall systems
Over the past few years one of us (Murthy) in collaboration with R. Shankar
has developed an extended Hamiltonian formalism capable of describing the
ground state and low energy excitations in the fractional quantum Hall regime.
The Hamiltonian, expressed in terms of Composite Fermion operators,
incorporates all the nonperturbative features of the fractional Hall regime, so
that conventional many-body approximations such as Hartree-Fock and
time-dependent Hartree-Fock are applicable. We apply this formalism to develop
a microscopic theory of the collective edge modes in fractional quantum Hall
regime. We present the results for edge mode dispersions at principal filling
factors and for systems with unreconstructed edges. The
primary advantage of the method is that one works in the thermodynamic limit
right from the beginning, thus avoiding the finite-size effects which
ultimately limit exact diagonalization studies.Comment: 12 pages, 9 figures, See cond-mat/0303359 for related result
Quantized Thermal Transport in the Fractional Quantum Hall Effect
We analyze thermal transport in the fractional quantum Hall effect (FQHE),
employing a Luttinger liquid model of edge states. Impurity mediated
inter-channel scattering events are incorporated in a hydrodynamic description
of heat and charge transport. The thermal Hall conductance, , is shown to
provide a new and universal characterization of the FQHE state, and reveals
non-trivial information about the edge structure. The Lorenz ratio between
thermal and electrical Hall conductances {\it violates} the free-electron
Wiedemann-Franz law, and for some fractional states is predicted to be {\it
negative}. We argue that thermal transport may provide a unique way to detect
the presence of the elusive upstream propagating modes, predicted for fractions
such as and .Comment: 6 pages REVTeX, 2 postscript figures (uuencoded and compressed
Current and charge distributions of the fractional quantum Hall liquids with edges
An effective Chern-Simons theory for the quantum Hall states with edges is
studied by treating the edge and bulk properties in a unified fashion. An exact
steady-state solution is obtained for a half-plane geometry using the
Wiener-Hopf method. For a Hall bar with finite width, it is proved that the
charge and current distributions do not have a diverging singularity. It is
shown that there exists only a single mode even for the hierarchical states,
and the mode is not localized exponentially near the edges. Thus this result
differs from the edge picture in which electrons are treated as strictly one
dimensional chiral Luttinger liquids.Comment: 21 pages, REV TeX fil
Exact perturbative solution of the Kondo problem
We explicitly evaluate the infinite series of integrals that appears in the
"Anderson-Yuval" reformulation of the anisotropic Kondo problem in terms of a
one-dimensional Coulomb gas. We do this by developing a general approach
relating the anisotropic Kondo problem of arbitrary spin with the boundary
sine-Gordon model, which describes impurity tunneling in a Luttinger liquid and
in the fractional quantum Hall effect. The Kondo solution then follows from the
exact perturbative solution of the latter model in terms of Jack polynomials.Comment: 4 pages in revtex two-colum
Impurity scattering and transport of fractional Quantum Hall edge state
We study the effects of impurity scattering on the low energy edge state
dynamic s for a broad class of quantum Hall fluids at filling factor , for integer and even integer . When is positive all
of the edge modes are expected to move in the same direction, whereas for
negative one mode moves in a direction opposite to the other modes.
Using a chiral-Luttinger model to describe the edge channels, we show that for
an ideal edge when is negative, a non-quantized and non-universal Hall
conductance is predicted. The non-quantized conductance is associated with an
absence of equilibration between the edge channels. To explain the robust
experimental Hall quantization, it is thus necessary to incorporate impurity
scattering into the model, to allow for edge equilibration. A perturbative
analysis reveals that edge impurity scattering is relevant and will modify the
low energy edge dynamics. We describe a non-perturbative solution for the
random channel edge, which reveals the existence of a new
disorder-dominated phase, characterized by a stable zero temperature
renormalization group fixed point. The phase consists of a single propagating
charge mode, which gives a quantized Hall conductance, and neutral modes.
The neutral modes all propagate at the same speed, and manifest an exact SU(n)
symmetry. At finite temperatures the SU(n) symmetry is broken and the neutral
modes decay with a finite rate which varies as at low temperatures.
Various experimental predictions and implications which follow from the exact
solution are described in detail, focusing on tunneling experiments through
point contacts.Comment: 19 pages (two column), 5 post script figures appended, 3.0 REVTE
Edge reconstruction in the fractional quantum Hall regime
The interplay of electron-electron interaction and confining potential can
lead to the reconstruction of fractional quantum Hall edges. We have performed
exact diagonalization studies on microscopic models of fractional quantum Hall
liquids, in finite size systems with disk geometry, and found numerical
evidence of edge reconstruction under rather general conditions. In the present
work we have taken into account effects like layer thickness and Landau level
mixing, which are found to be of quantitative importance in edge physics. Due
to edge reconstruction, additional nonchiral edge modes arise for both
incompressible and compressible states. These additional modes couple to
electromagnetic fields and thus can be detected in microwave conductivity
measurements. They are also expected to affect the exponent of electron Green's
function, which has been measured in tunneling experiments. We have studied in
this work the electric dipole spectral function that is directly related to the
microwave conductivity measurement. Our results are consistent with the
enhanced microwave conductivity observed in experiments performed on samples
with an array of antidots at low temperatures, and its suppression at higher
temperatures. We also discuss the effects of the edge reconstruction on the
single electron spectral function at the edge.Comment: 19 pages, 12 figure
- …
