3,999 research outputs found

    Magnetic energy production by turbulence in binary neutron star mergers

    Full text link
    The simultaneous detection of electromagnetic and gravitational wave emission from merging neutron star binaries would aid greatly in their discovery and interpretation. By studying turbulent amplification of magnetic fields in local high-resolution simulations of neutron star merger conditions, we demonstrate that magnetar-level (~10^16) G fields are present throughout the merger duration. We find that the small-scale turbulent dynamo converts 60% of the randomized kinetic energy into magnetic fields on a merger time scale. Since turbulent magnetic energy dissipates through reconnection events which accelerate relativistic electrons, turbulence may facilitate the conversion of orbital kinetic energy into radiation. If 10^-4 of the ~ 10^53 erg of orbital kinetic available gets processed through reconnection, and creates radiation in the 15-150 keV band, then the fluence at 200 Mpc would be 10^-7 erg/cm^2, potentially rendering most merging neutron stars in the advanced LIGO and Virgo detection volumes detectable by Swift BAT

    High-Frequency Voronoi Noise Reduced by Smoothed Mesh Motion

    Full text link
    We describe a technique for improving the performance of hydrodynamics codes which employ a moving Voronoi mesh. Currently, such codes are susceptible to high-frequency noise produced by rapid adjustments in the grid topology on the smallest scales. The treatment for this grid noise is simple; instead of moving the mesh-generating marker points with the local fluid velocity, this velocity field is smoothed on small scales, so that neighboring marker points generally have similar velocities. We demonstrate significant improvement gained by this adjustment in several code tests relevant to the physics which moving-mesh codes are designed to capture.Comment: MNRAS Accepte
    corecore