413 research outputs found

    Ethics, Nanobiosensors and Elite Sport: The Need for a New Governance Framework

    Get PDF
    Individual athletes, coaches and sports teams seek continuously for ways to improve performance and accomplishment in elite competition. New techniques of performance analysis are a crucial part of the drive for athletic perfection. This paper discusses the ethical importance of one aspect of the future potential of performance analysis in sport, combining the field of biomedicine, sports engineering and nanotechnology in the form of ‘Nanobiosensors’. This innovative technology has the potential to revolutionise sport, enabling real time biological data to be collected from athletes that can be electronically distributed. Enabling precise real time performance analysis is not without ethical problems. Arguments concerning (1) data ownership and privacy; (2) data confidentiality; and (3) athlete welfare are presented alongside a discussion of the use of the Precautionary Principle in making ethical evaluations. We conclude, that although the future potential use of Nanobiosensors in sports analysis offers many potential benefits, there is also a fear that it could be abused at a sporting system level. Hence, it is essential for sporting bodies to consider the development of a robust ethically informed governance framework in advance of their proliferated use

    How Does the VSG Coat of Bloodstream Form African Trypanosomes Interact with External Proteins?

    Get PDF
    Variations on the statement "the variant surface glycoprotein (VSG) coat that covers the external face of the mammalian bloodstream form of Trypanosoma brucei acts a physical barrier" appear regularly in research articles and reviews. The concept of the impenetrable VSG coat is an attractive one, as it provides a clear model for understanding how a trypanosome population persists; each successive VSG protects the plasma membrane and is immunologically distinct from previous VSGs. What is the evidence that the VSG coat is an impenetrable barrier, and how do antibodies and other extracellular proteins interact with it? In this review, the nature of the extracellular surface of the bloodstream form trypanosome is described, and past experiments that investigated binding of antibodies and lectins to trypanosomes are analysed using knowledge of VSG sequence and structure that was unavailable when the experiments were performed. Epitopes for some VSG monoclonal antibodies are mapped as far as possible from previous experimental data, onto models of VSG structures. The binding of lectins to some, but not to other, VSGs is revisited with more recent knowledge of the location and nature of N-linked oligosaccharides. The conclusions are: (i) Much of the variation observed in earlier experiments can be explained by the identity of the individual VSGs. (ii) Much of an individual VSG is accessible to antibodies, and the barrier that prevents access to the cell surface is probably at the base of the VSG N-terminal domain, approximately 5 nm from the plasma membrane. This second conclusion highlights a gap in our understanding of how the VSG coat works, as several plasma membrane proteins with large extracellular domains are very unlikely to be hidden from host antibodies by VSG.The authors’ lab is funded by the Wellcome Trust (093008/Z10/Z) and the Medical Research Council (MR/L008246/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.This is the final version of the article. It was first available from PLOS via http://dx.doi.org/10.1371/journal.ppat.100525

    Radar‐Sounding Characterization of the Subglacial Groundwater Table Beneath Hiawatha Glacier, Greenland

    Get PDF
    Radar-sounding surveys associated with the discovery of a large impact crater beneath Hiawatha Glacier, Greenland, revealed bright, flat subglacial reflections hypothesized to originate from a subglacial groundwater table. We test this hypothesis using radiometric and hydrologic analysis of those radar data. The dielectric loss between the reflection from the top of the basal layer and subglacial reflection and their reflectivity difference represent dual constraints upon the complex permittivity of the basal material. Either ice-cemented debris or fractured, well-drained bedrock explain the basal layer's radiometric properties. The subglacial reflector's geometry is parallel to isopotential hydraulic head contours, located 7.5–15.3 m below the interface, and 11 ± 7 dB brighter than the ice–basal layer reflection. We conclude that this subglacial reflection is a groundwater table and that its detection was enabled by the wide bandwidth of the radar system and unusual geologic setting, suggesting a path for future direct radar detection of subglacial groundwater elsewhere

    Interactions Between Genetic Variants and Environmental Factors Affect Risk of Esophageal Adenocarcinoma and Barrett’s Esophagus

    Get PDF
    Background & Aims: Genome-wide association studies (GWAS) have identified more than 20 susceptibility loci for esophageal adenocarcinoma (EA) and Barrett’s esophagus (BE). However, variants in these loci account for a small fraction of cases of EA and BE. Genetic factors might interact with environmental factors to affect risk of EA and BE. We aimed to identify single nucleotide polymorphisms (SNPs) that may modify the associations of body mass index (BMI), smoking, and gastroesophageal reflux disease (GERD), with risks of EA and BE. Methods: We collected data on single BMI measurements, smoking status, and symptoms of GERD from 2284 patients with EA, 3104 patients with BE, and 2182 healthy individuals (controls) participating in the Barrett’s and Esophageal Adenocarcinoma Consortium GWAS, the UK Barrett’s Esophagus Gene Study, and the UK Stomach and Oesophageal Cancer Study. We analyzed 993,501 SNPs in DNA samples of all study subjects. We used standard case–control logistic regression to test for gene-environment interactions. Results: For EA, rs13429103 at chromosome 2p25.1, near the RNF144A-LOC339788 gene, showed a borderline significant interaction with smoking status (P = 2.18×10-7). Ever smoking was associated with an almost 12-fold increase in risk of EA among individuals with rs13429103-AA genotype (odds ratio=11.82; 95% CI, 4.03–34.67). Three SNPs (rs12465911, rs2341926, rs13396805) at chromosome 2q23.3, near the RND3-RBM43 gene, interacted with GERD symptoms (P = 1.70×10-7, P = 1.83×10-7, and P = 3.58×10-7, respectively) to affect risk of EA. For BE, rs491603 at chromosome 1p34.3, near the EIF2C3 gene, and rs11631094 at chromosome 15q14, at the SLC12A6 gene, interacted with BMI (P = 4.44×10-7) and pack-years of smoking history (P = 2.82×10-7), respectively. Conclusion: The associations of BMI, smoking, and GERD symptoms with risks of EA and BE appear to vary with SNPs at chromosomes 1, 2, and 15. Validation of these suggestive interactions is warranted

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    The Scottish Early Rheumatoid Arthritis (SERA) Study:an inception cohort and biobank

    Get PDF
    Background: The Scottish Early Rheumatoid Arthritis (SERA) study is an inception cohort of rheumatoid (RA) and undifferentiated arthritis (UA) patients that aims to provide a contemporary description of phenotype and outcome and facilitate discovery of phenotypic and prognostic biomarkers Methods: Demographic and clinical outcome data are collected from newly diagnosed RA/UA patients every 6 months from around Scotland. Health service utilization data is acquired from Information Services Division, NHS National Services Scotland. Plain radiographs of hands and feet are collected at baseline and 12 months. Additional samples of whole blood, plasma, serum and filtered urine are collected at baseline, 6 and 12 months Results: Results are available for 1073 patients; at baseline, 76 % were classified as RA and 24 % as UA. Median time from onset to first review was 163 days (IQR97-323). Methotrexate was first-line DMARD for 75 % patients. Disease activity, functional ability and health-related quality of life improved significantly between baseline and 24 months, however the proportion in any employment fell (51 to 38 %, p = 0.0005). 24 % patients reported symptoms of anxiety and/or depression at baseline. 35/391 (9 %) patients exhibited rapid radiographic progression after 12 months. The SERA Biobank has accrued 60,612 samples Conclusions: In routine care, newly diagnosed RA/UA patients experience significant improvements in disease activity, functional ability and health-related quality of life but have high rates of psychiatric symptoms and declining employment rates. The co-existence of a multi-domain description of phenotype and a comprehensive biobank will facilitate multi-platform translational research to identify predictive markers of phenotype and prognosis

    Current and prospective pharmacological targets in relation to antimigraine action

    Get PDF
    Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, α-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and β-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (α1, α2, and β), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon

    Urban Biodiversity and Landscape Ecology: Patterns, Processes and Planning

    Get PDF
    Effective planning for biodiversity in cities and towns is increasingly important as urban areas and their human populations grow, both to achieve conservation goals and because ecological communities support services on which humans depend. Landscape ecology provides important frameworks for understanding and conserving urban biodiversity both within cities and considering whole cities in their regional context, and has played an important role in the development of a substantial and expanding body of knowledge about urban landscapes and communities. Characteristics of the whole city including size, overall amount of green space, age and regional context are important considerations for understanding and planning for biotic assemblages at the scale of entire cities, but have received relatively little research attention. Studies of biodiversity within cities are more abundant and show that longstanding principles regarding how patch size, configuration and composition influence biodiversity apply to urban areas as they do in other habitats. However, the fine spatial scales at which urban areas are fragmented and the altered temporal dynamics compared to non-urban areas indicate a need to apply hierarchical multi-scalar landscape ecology models to urban environments. Transferring results from landscape-scale urban biodiversity research into planning remains challenging, not least because of the requirements for urban green space to provide multiple functions. An increasing array of tools is available to meet this challenge and increasingly requires ecologists to work with planners to address biodiversity challenges. Biodiversity conservation and enhancement is just one strand in urban planning, but is increasingly important in a rapidly urbanising world

    Selecting Forecasting Methods

    Get PDF
    I examined six ways of selecting forecasting methods: Convenience, “what’s easy,” is inexpensive, but risky. Market popularity, “what others do,” sounds appealing but is unlikely to be of value because popularity and success may not be related and because it overlooks some methods. Structured judgment, “what experts advise,” which is to rate methods against prespecified criteria, is promising. Statistical criteria, “what should work,” are widely used and valuable, but risky if applied narrowly. Relative track records, “what has worked in this situation,” are expensive because they depend on conducting evaluation studies. Guidelines from prior research, “what works in this type of situation,” relies on published research and offers a low-cost, effective approach to selection. Using a systematic review of prior research, I developed a flow chart to guide forecasters in selecting among ten forecasting methods. Some key findings: Given enough data, quantitative methods are more accurate than judgmental methods. When large changes are expected, causal methods are more accurate than naive methods. Simple methods are preferable to complex methods; they are easier to understand, less expensive, and seldom less accurate. To select a judgmental method, determine whether there are large changes, frequent forecasts, conflicts among decision makers, and policy considerations. To select a quantitative method, consider the level of knowledge about relationships, the amount of change involved, the type of data, the need for policy analysis, and the extent of domain knowledge. When selection is difficult, combine forecasts from different methods
    corecore