356 research outputs found
A modified expression of the major hydrolase activator in Hypocrea jecorina (Trichoderma reesei) changes enzymatic catalysis of biopolymer degradation
AbstractHypocrea jecorina (anamorph Trichoderma reesei) is a saprophytic fungus that produces hydrolases, which are applied in different types of industries and used for the production of biofuel. A recombinant Hypocrea strain, which constantly expresses the main transcription activator of hydrolases (Xylanase regulator 1), was found to grow faster on xylan and its monomeric backbone molecule d-xylose. This strain also showed improved ability of clearing xylan medium on plates. Furthermore, this strain has a changed transcription profile concerning genes encoding for hydrolases and enzymes associated with degradation of (hemi)celluloses. We demonstrated that enzymes of this strain from a xylan cultivation favoured break down of hemicelluloses to the monomer d-xylose compared to the parental strain, while the enzymes of the latter one formed more xylobiose. Applying supernatants from cultivation on carboxymethylcellulose in enzymatic conversion of hemicelluloses, the enzymes of the recombinant strain were clearly producing more of both, d-xylose and xylobiose, compared to the parental strain. Altogether, these results point to a changed hydrolase expression profile, an enhanced capability to form the xylan-monomer d-xylose and the assumption that there is a disordered induction pattern if the Xylanase regulator 1 is de-regulated in Hypocrea
Quantitative modeling and analytic assessment of the transcription dynamics of the XlnR regulon in Aspergillus niger
Background: Transcription of genes coding for xylanolytic and cellulolytic enzymes in Aspergillus niger is controlled by the transactivator XlnR. In this work we analyse and model the transcription dynamics in the XlnR regulon from time-course data of the messenger RNA levels for some XlnR target genes, obtained by reverse transcription quantitative PCR (RT-qPCR). Induction of transcription was achieved using low (1 mM) and high (50 mM) concentrations of D-xylose (Xyl). We investigated the wild type strain (Wt) and a mutant strain with partial loss-of-function of the carbon catabolite repressor CreA (Mt). Results: An improved kinetic differential equation model based on two antagonistic Hill functions was proposed, and fitted to the time-course RT-qPCR data from the Wt and the Mt by numerical optimization of the parameters. We show that perturbing the XlnR regulon with Xyl in low and high concentrations results in different expression levels and transcription dynamics of the target genes. At least four distinct transcription profiles were observed, particularly for the usage of 50 mM Xyl. Higher transcript levels were observed for some genes after induction with 1 mM rather than 50 mM Xyl, especially in the Mt. Grouping the expression profiles of the investigated genes has improved our understanding of induction by Xyl and the according regulatory role of CreA. Conclusions: The model explains for the higher expression levels at 1 mM versus 50 mM in both Wt and Mt. It does not yet fully encapsulate the effect of partial loss-of-function of CreA in the Mt. The model describes the dynamics in most of the data and elucidates the time-dynamics of the two major regulatory mechanisms: i) the activation by XlnR, and ii) the carbon catabolite repression by CreA.</p
Characterization of erythrose reductases from filamentous fungi
Proteins with putative erythrose reductase activity have been identified in the filamentous fungi Trichoderma reesei, Aspergillus niger, and Fusarium graminearum by in silico analysis. The proteins found in T. reesei and A. niger had earlier been characterized as glycerol dehydrogenase and aldehyde reductase, respectively. Corresponding genes from all three fungi were cloned, heterologously expressed in Escherichia coli, and purified. Subsequently, they were used to establish optimal enzyme assay conditions. All three enzymes strictly require NADPH as cofactor, whereas with NADH no activity could be observed. The enzymatic characterization of the three enzymes using ten substrates revealed high substrate specificity and activity with D-erythrose and D-threose. The enzymes from T. reesei and A. niger herein showed comparable activities, whereas the one from F. graminearum reached only about a tenth of it for all tested substrates. In order to proof in vivo the proposed enzyme function, we overexpressed the erythrose reductase-encoding gene in T. reesei. An increased production of erythritol by the recombinant strain compared to the parental strain could be detected
Synthesis of an antiviral drug precursor from chitin using a saprophyte as a whole-cell catalyst
Background:
Recent incidents, such as the SARS and influenza epidemics, have highlighted the need for readily available antiviral drugs. One important precursor currently used for the production of Relenza, an antiviral product from GlaxoSmithKline, is N-acetylneuraminic acid (NeuNAc). This substance has a considerably high market price despite efforts to develop cost-reducing (biotechnological) production processes. Hypocrea jecorina (Trichoderma reesei) is a saprophyte noted for its abundant secretion of hydrolytic enzymes and its potential to degrade chitin to its monomer N-acetylglucosamine (GlcNAc). Chitin is considered the second most abundant biomass available on earth and therefore an attractive raw material.
Results:
In this study, we introduced two enzymes from bacterial origin into Hypocrea, which convert GlcNAc into NeuNAc via N-acetylmannosamine. This enabled the fungus to produce NeuNAc from the cheap starting material chitin in liquid culture. Furthermore, we expressed the two recombinant enzymes as GST-fusion proteins and developed an enzyme assay for monitoring their enzymatic functionality. Finally, we demonstrated that Hypocrea does not metabolize NeuNAc and that no NeuNAc-uptake by the fungus occurs, which are important prerequisites for a potential production strategy.
Conclusions:
This study is a proof of concept for the possibility to engineer in a filamentous fungus a bacterial enzyme cascade, which is fully functional. Furthermore, it provides the basis for the development of a process for NeuNAc production as well as a general prospective design for production processes that use saprophytes as whole-cell catalysts
Mutation of the Xylanase regulator 1 causes a glucose blind hydrolase expressing phenotype in industrially used Trichoderma strains
Abstract
Background
Trichoderma reesei is an organism involved in degradation of (hemi)cellulosic biomass. Consequently, the corresponding enzymes are commonly used in different types of industries, and recently gained considerable importance for production of second-generation biofuel. Many industrial T. reesei strains currently in use are derived from strain Rut-C30, in which cellulase and hemicellulase expression is released from carbon catabolite repression. Nevertheless, inducing substances are still necessary for a satisfactory amount of protein formation.
Results
Here, we report on a T. reesei strain, which exhibits a very high level of xylanase expression regardless if inducing substances (e.g. D-xylose, xylobiose) are used. We found that a single point mutation in the gene encoding the Xylanase regulator 1 (Xyr1) is responsible for this strong deregulation of endo-xylanase expression and, moreover, a highly elevated basal level of cellulase expression. This point mutation is localized in a domain that is common in binuclear zinc cluster transcription factors. Only the use of sophorose as inducer still leads to a slight induction of cellulase expression. Under all tested conditions, the formation of cbh1 and cbh2 transcript level strictly follows the transcript levels of xyr1. The correlation of xyr1 transcript levels and cbh1/cbh2 transcript levels and also their inducibility via sophorose is not restricted to this strain, but occurs in all ancestor strains up to the wild-type QM6a.
Conclusions
Engineering a key transcription factor of a target regulon seems to be a promising strategy in order to increase enzymes yields independent of the used substrate or inducer. The regulatory domain where the described mutation is located is certainly an interesting research target for all organisms that also depend so far on certain inducing conditions.
</jats:sec
Quantification of paravalvular leaks associated with TAVI implants using 4D MRI in an aortic root phantom made possible by the use of 3D printing
IntroductionTranscatheter aortic valve implantation (TAVI) has become an alternative to surgical replacement of the aortic valve elderly patients. However, TAVI patients may suffer from paravalvular leaks (PVL). Detecting and grading is usually done by echocardiography, but is limited by resolution, 2D visualization and operator dependency. 4D flow magnetic resonance imaging (MRI) is a promising alternative, which did not reach clinical application in TAVI patients. The aim of this study was applying 3D printing technologies in order to evaluate flow patterns and hemodynamics of PVLs following TAVI, exploiting 4D flow MRI and standard ultrasound. Materials and methodsAn MR-compatible, anatomically left ventricle, aortic root, and ascending aorta model was fabricated by combining 3D-printed parts and various soft silicone materials to match physiological characteristics. An Abbott Portico (TM) valve was used in continuous antegrade flow (12-22 l/min), retrograde flow with varying transvalvular pressures (60-110 mmHg), and physiological pulsatile hemodynamics (aortic pressure: 120/80 mmHg, cardiac output: 5 l/min) Time-resolved MR measurements were performed above and below the TAVI stent and compared with color Doppler ultrasound measurements in exactly the same setup. ResultsThe continuous antegrade flow measurements from MRI largely agreed with the flowmeter measurements, and a maximum error of only 7% was observed. In the retrograde configuration, visualization of the paravalvular leaks was possible from the MR measurements, but flow was overestimated by up to 33%. The 4D MRI measurement in the pulsatile setup revealed a single main PVL, which was also confirmed by the color Doppler measurements, and velocities were similar (2.0 m/s vs. 1.7 m/s). Discussion4D MRI techniques were used to qualitatively assess flow in a patient-specific, MR-compatible and flexible model, which only became possible through the use of 3D printing techniques. Flow patterns in the ascending aorta, identification and quantification of PVLs was possible and the location and extent of PVLs were confirmed by ultrasound measurements. The 4D MRI flow technique allowed evaluation of flow patterns in the ascending aorta and the left ventricle below the TAVI stent with good results in identifying PVLs, demonstrating its capabilities over ultrasound by providing the ability to visualize the paravalvular jets in three dimensions at however, additional expenditure of time and money
D-Xylose Concentration-Dependent Hydrolase Expression Profiles and the Function of CreA and XlnR in Aspergillus niger
Aspergillus niger is an important organism for the production of industrial enzymes such as hemicellulases and pectinases. The xylan-backbone monomer, d-xylose, is an inducing substance for the coordinate expression of a large number of polysaccharide-degrading enzymes. In this study, the responses of 22 genes to low (1 mM) and high (50 mM) d-xylose concentrations were investigated. These 22 genes encode enzymes that function as xylan backbone-degrading enzymes, accessory enzymes, cellulose-degrading enzymes, or enzymes involved in the pentose catabolic pathway in A. niger. Notably, genes encoding enzymes that have a similar function (e.g., xylan backbone degradation) respond in a similar manner to different concentrations of d-xylose. Although low d-xylose concentrations provoke the greatest change in transcript levels, in particular, for hemicellulase-encoding genes, transcript formation in the presence of high concentrations of d-xylose was also observed. Interestingly, a high d-xylose concentration is favorable for certain groups of genes. Furthermore, the repressing influence of CreA on the transcription and transcript levels of a subset of these genes was observed regardless of whether a low or high concentration of d-xylose was used. Interestingly, the decrease in transcript levels of certain genes on high d-xylose concentrations is not reflected by the transcript level of their activator, XlnR. Regardless of the d-xylose concentration applied and whether CreA was functional, xlnR was constitutively expressed at a low leve
In Vivo Study of the Sorbicillinoid Gene Cluster in Trichoderma reesei
Sorbicillinoids are a diverse group of yellow secondary metabolites that are produced by a range of not closely related ascomycetes, including Penicillium chrysogenum, Acremonium chrysogenum, and Trichoderma reesei. They share a similarity to the name-giving compound sorbicillin, a hexaketide. Previously, a conserved gene cluster containing two polyketide synthases has been identified as the source of sorbicillin, and a model for the biosynthesis of sorbicillin in P. chrysogenum has been proposed. In this study, we deleted the major genes of interest of the cluster in T. reesei, namely sor1, sor3, and sor4. Sor1 is the homolog of P. chrysogenum SorA, which is the first polyketide synthase of the proposed biosynthesis pathway. Sor3 is a flavin adenine dinucleotide (FAD)-dependent monooxygenase, and its homolog in P. chrysogenum, SorC, was shown to oxidize sorbicillin and 2′,3′-dihydrosorbicillin to sorbicillinol and 2′,3′-dihydrosorbicillinol, respectively, in vitro. Sor4 is an FAD/flavin mononucleotide-containing dehydrogenase with an unknown function. We measured the amounts of synthesized sorbicillinoids throughout growth and could verify the roles of Sor1 and Sor3 in vivo in T. reesei. In the absence of Sor4, two compounds annotated to dihydrosorbicillinol accumulate in the supernatant and only small amounts of sorbicillinol are synthesized. Therefore, we suggest extending the current biosynthesis model about Sor4 reducing 2′,3′-dihydrosorbicillin and 2′,3′-dihydrosorbicillinol to sorbicillinol and sorbicillinol, respectively. Sorbicillinol turned out to be the main chemical building block for most sorbicillinoids, including oxosorbicillinol, bisorbicillinol, and bisvertinolon. Further, we detected the sorbicillinol-dependent synthesis of 5-hydroxyvertinolide at early time points, which contradicts previous models for biosynthesis of 5-hydroxyvertinolide. Finally, we investigated whether sorbicillinoids from T. reesei have a growth limiting effect on the fungus itself or on plant pathogenic fungi or on pathogenic bacteria
Identification and functional characterization of novel xylose transporters from the cell factories Aspergillus niger and Trichoderma reesei
Background: Global climate change and fossil fuels limitations have boosted the demand for robust and efficient microbial factories for the manufacturing of bio-based products from renewable feedstocks. In this regard, efforts have been done to enhance the enzyme-secreting ability of lignocellulose-degrading fungi, aiming to improve protein yields while taking advantage of their ability to use lignocellulosic feedstocks. Access to sugars in complex polysaccharides depends not only on their release by specific hydrolytic enzymes, but also on the presence of transporters capable of effectively transporting the constituent sugars into the cell. This study aims to identify and characterize xylose transporters from Aspergillus Niger and Trichoderma reesei, two fungi that have been industrially exploited for decades for the production of lignocellulose-degrading hydrolytic enzymes. Results: A hidden Markov model for the identification of xylose transporters was developed and used to analyze the A. Niger and T. reesei in silico proteomes, yielding a list of candidate xylose transporters. From this list, three A. Niger (XltA, XltB and XltC) and three T. reesei (Str1, Str2 and Str3) transporters were selected, functionally validated and biochemically characterized through their expression in a Saccharomyces cerevisiae hexose transport null mutant, engineered to be able to metabolize xylose but unable to transport this sugar. All six transporters were able to support growth of the engineered yeast on xylose but varied in affinities and efficiencies in the uptake of the pentose. Amino acid sequence analysis of the selected transporters showed the presence of specific residues and motifs recently associated to xylose transporters. Transcriptional analysis of A. Niger and T. reesei showed that XltA and Str1 were specifically induced by xylose and dependent on the XlnR/Xyr1 regulators, signifying a biological role for these transporters in xylose utilization. Conclusions: This study revealed the existence of a variety of xylose transporters in the cell factories A. Niger and T. reesei. The particular substrate specificity and biochemical properties displayed by A. Niger XltA and XltB suggested a possible biological role for these transporters in xylose uptake. New insights were also gained into the molecular mechanisms regulating the pentose utilization, at inducer uptake level, in these fungi. Analysis of the A. Niger and T. reesei predicted transportome with the newly developed hidden Markov model showed to be an efficient approach for the identification of new xylose transporting proteins.</p
A truncated form of the Carbon catabolite repressor 1 increases cellulase production in Trichoderma reesei
- …
