8 research outputs found

    Evaluation of micro-energy dispersive X-ray fluorescence and histochemical tests for aluminium detection in plants from High Altitude Rocky Complexes, Southeast Brazil

    Get PDF
    The soils developed under High Altitude Rocky Complexes in Brazil are generally of very low chemical fertility, with low base saturation and high exchangeable aluminium concentration. This stressful condition imposes evolutionary pressures that lead to ecological success of plant species that are able to tolerate or accumulate high amounts of aluminium. Several analytical methods are currently available for elemental mapping of biological structures, such as micro-X-ray fluorescence (μ-EDX) and histochemical tests. The aim of this study was to combine μ-EDX analysis and histochemical tests to quantify aluminium in plants from High Altitude Rocky Complexes, identifying the main sites for Al-accumulation. Among the studied species, five showed total Al concentration higher than 1000 mg kg−1. The main Al-hyperaccumulator plants, Lavoisiera pectinata, Lycopodium clavatum and Trembleya parviflora presented positive reactions in the histochemical tests using Chrome Azurol and Aluminon. Strong positive correlations were observed between the total Al concentrations and data obtained by μ-EDX analysis. The μ-EDX analysis is a potential tool to map and quantify Al in hyperaccumulator species, and a valuable technique due to its non-destructive capacity. Histochemical tests can be helpful to indicate the accumulation pattern of samples before they are submitted for further μ-EDX scrutiny

    Quantitative trait locus affecting birth weight on bovine chromosome 5 in a F2 Gyr x Holstein population

    No full text
    Segregation between a genetic marker and a locus influencing a quantitative trait in a well delineated population is the basis for success in mapping quantitative trait loci (QTL). To detect bovine chromosome 5 (BTA5) birth weight QTL we genotyped 294 F2 Gyr (Bos indicus) x Holstein (Bos taurus) crossbreed cattle for five microsatellite markers. A linkage map was constructed for the markers and an interval analysis for the presence of QTL was performed. The linkage map indicated differences in the order of two markers relative to the reference map (<A HREF="http://www.marc.usda.gov/">http://www.marc.usda.gov</A>). Interval analysis detected a QTL controlling birth weight (p < 0.01) at 69 centimorgans (cM) from the most centromeric marker with an effect of 0.32 phenotypic standard-error. These results support other studies with crossbred Bos taurus x Bos indicus populations

    Quantitative trait loci (QTL) mapping for growth traits on bovine chromosome 14

    Get PDF
    Quantitative trait loci (QTL) mapping in livestock allows the identification of genes that determine the genetic variation affecting traits of economic interest. We analyzed the birth weight and weight at 60 days QTL segregating on bovine chromosome BTA14 in a F2 resource population using genotypes produced from seven microsatellite markers. Phenotypes were derived from 346 F2 progeny produced from crossing Bos indicus Gyr x Holstein Bos taurus F1 parents. Interval analysis to detect QTL for birth weight revealed the presence of a QTL (p < 0.05) at 1 centimorgan (cM) from the centromere with an additive effect of 1.210 ± 0.438 kg. Interval analysis for weight at 60 days revealed the presence of a QTL (p < 0.05) at 0 cM from the centromere with an additive effect of 2.122 ± 0.735 kg. The region to which the QTL were assigned is described in the literature as responsible for some growth traits, milk yield, milk composition, fat deposition and has also been related to reproductive traits such as daughter pregnancy rate and ovulation rate. The effects of the QTL described on other traits were not investigated
    corecore