109 research outputs found
Hidden symmetry and quantum phases in spin-3/2 cold atomic systems
Optical traps and lattices provide a new opportunity to study strongly
correlated high spin systems with cold atoms. In this article, we review the
recent progress on the hidden symmetry properties in the simplest high spin
fermionic systems with hyperfine spin , which may be realized with atoms
of Cs, Be, Ba, Ba, and Hg. A {\it generic}
SO(5) or isomorphically, ) symmetry is proved in such systems with the
s-wave scattering interactions in optical traps, or with the on-site Hubbard
interactions in optical lattices. Various important features from this high
symmetry are studied in the Fermi liquid theory, the mean field phase diagram,
and the sign problem in quantum Monte-Carlo simulations. In the s-wave quintet
Cooper pairing phase, the half-quantum vortex exhibits the global analogue of
the Alice string and non-Abelian Cheshire charge properties in gauge theories.
The existence of the quartetting phase, a four-fermion counterpart of the
Cooper pairing phase, and its competition with other orders are studied in one
dimensional spin-3/2 systems. We also show that counter-intuitively quantum
fluctuations in spin-3/2 magnetic systems are even stronger than those in
spin-1/2 systems
Off-resonant vibrational excitation: Orientational dependence and spatial control of photofragments
10.1063/1.1316003Journal of Chemical Physics113187838-7844JCPS
Orientations of two coupled molecules
Orientation states of two coupled polar molecules controlled by laser pulses
are studied theoretically. By varying the period of a series of periodically
applied laser pulse, transition from regular to chaotic behavior may occur.
Schmidt decomposition is used to measure the degree of entanglement. It is
found that the entanglement can be enhanced by increasing the strength of laser
pulse.Comment: 4 pages, 4 figures, to appear in Chem. Phys. Lett.(2004
Superfluid dynamics in neutron star crusts
A simple description of superfluid hydrodynamics in the inner crust of a
neutron star is given. Particular attention is paid to the effect of the
lattice of nuclei on the properties of the superfluid neutrons, and the effects
of entrainment, the fact that some fraction of the neutrons are locked to the
motion of the protons in nuclei
Superfluid Dynamics of a Bose-Einstein Condensate in a Periodic Potential
We investigate the superfluid properties of a Bose-Einstein condensate (BEC)
trapped in a one dimensional periodic potential. We study, both analytically
(in the tight binding limit) and numerically, the Bloch chemical potential, the
Bloch energy and the Bogoliubov dispersion relation, and we introduce {\it two}
different, density dependent, effective masses and group velocities. The
Bogoliubov spectrum predicts the existence of sound waves, and the arising of
energetic and dynamical instabilities at critical values of the BEC
quasi-momentum which dramatically affect its coherence properties. We
investigate the dependence of the dipole and Bloch oscillation frequencies in
terms of an effective mass averaged over the density of the condensate. We
illustrate our results with several animations obtained solving numerically the
time-dependent Gross-Pitaevskii equation.Comment: 13 pages, 7 figures, movies and published paper available at
http://www.iop.org/EJ/abstract/1367-2630/5/1/11
Loss and revival of phase coherence in a Bose-Einstein condensate moving through an optical lattice
We investigate the phase coherence of a trapped Bose-Einstein condensate that
undergoes a dynamical superfluid-insulator transition in the presence of a
one-dimensional optical lattice. We study the evolution of the condensate after
a sudden displacement of the harmonic trapping potential by solving the
Gross-Pitaevskii equation, and comparing the results with the prediction of two
effective 1D models. We show that, owing to the 3D nature of the system, the
breakdown of the superfluid current above a critical displacement is not
associated to a sharp transition, but there exists a range of displacements for
which the condensate can recover a certain degree of coherence. We also discuss
the implications on the interference pattern after the ballistic expansion as
measured in recent experiments at LENS.Comment: 7 pages, 9 figure
Velocity of sound in a Bose-Einstein condensate in the presence of an optical lattice and transverse confinement
We study the effect of the transverse degrees of freedom on the velocity of
sound in a Bose-Einstein condensate immersed in a one-dimensional optical
lattice and radially confined by a harmonic trap. We compare the results of
full three-dimensional calculations with those of an effective 1D model based
on the equation of state of the condensate. The perfect agreement between the
two approaches is demonstrated for several optical lattice depths and
throughout the full crossover from the 1D mean-field to the Thomas Fermi regime
in the radial direction.Comment: final versio
- …
