1,422 research outputs found
A novel and precise time domain description of MOSFET low frequency noise due to random telegraph signals
Nowadays, random telegraph signals play an important role in integrated
circuit performance variability, leading for instance to failures in memory
circuits. This problem is related to the successive captures and emissions of
electrons at the many traps stochastically distributed at the silicon-oxide
(Si-SiO2) interface of MOS transistors. In this paper we propose a novel
analytical and numerical approach to statistically describe the fluctuations of
current due to random telegraph signal in time domain. Our results include two
distinct situations: when the density of interface trap density is uniform in
energy, and when it is an u-shape curve as prescribed in literature, here
described as simple quadratic function. We establish formulas for relative
error as function of the parameters related to capture and emission
probabilities. For a complete analysis experimental u-shape curves are used and
compared with the theoretical aproach
Fluctuation relations for a driven Brownian particle
We consider a driven Brownian particle, subject to both conservative and
non-conservative applied forces, whose probability evolves according to the
Kramers equation. We derive a general fluctuation relation, expressing the
ratio of the probability of a given Brownian path in phase space with that of
the time-reversed path, in terms of the entropy flux to the heat reservoir.
This fluctuation relation implies those of Seifert, Jarzynski and
Gallavotti-Cohen in different special cases
Transport Statistics of Bistable Systems
We consider the transport statistics of classical bistable systems driven by
noise. The stochastic path integral formalism is used to investigate the
dynamics and distribution of transmitted charge. Switching rates between the
two stable states are found from an instanton calculation, leading to an
effective two-state system on a long time scale. In the bistable current range,
the telegraph noise dominates the distribution, whose logarithm is found to be
universally described by a tilted ellipse.Comment: 4 pages, 3 figures, version to appear in Phys. Rev. Let
Microscopic Derivation of Causal Diffusion Equation using Projection Operator Method
We derive a coarse-grained equation of motion of a number density by applying
the projection operator method to a non-relativistic model. The derived
equation is an integrodifferential equation and contains the memory effect. The
equation is consistent with causality and the sum rule associated with the
number conservation in the low momentum limit, in contrast to usual acausal
diffusion equations given by using the Fick's law. After employing the Markov
approximation, we find that the equation has the similar form to the causal
diffusion equation. Our result suggests that current-current correlations are
not necessarily adequate as the definition of diffusion constants.Comment: 10 pages, 1 figure, Final version published in Phys. Rev.
Microwave Irradiation Effects on Random Telegraph Signal in a MOSFET
We report on the change of the characteristic times of the random telegraph
signal (RTS) in a MOSFET operated under microwave irradiation up to 40 GHz as
the microwave field power is raised. The effect is explained by considering the
time dependency of the transition probabilities due to a harmonic voltage
generated by the microwave field that couples with the wires connecting the
MOSFET. From the dc current excited into the MOSFET by the microwave field we
determine the corresponding equivalent drain voltage. The RTS experimental data
are in agreement with the prediction obtained with the model, making use of the
voltage data measured with the independent dc microwave induced current. We
conclude that when operating a MOSFET under microwave irradiation, as in single
spin resonance detection, one has to pay attention into the effects related to
microwave irradiation dependent RTS changes.Comment: 3 pages, 4 figure
Decoherence of a Josephson qubit due to coupling to two level systems
Noise and decoherence are major obstacles to the implementation of Josephson
junction qubits in quantum computing. Recent experiments suggest that two level
systems (TLS) in the oxide tunnel barrier are a source of decoherence. We
explore two decoherence mechanisms in which these two level systems lead to the
decay of Rabi oscillations that result when Josephson junction qubits are
subjected to strong microwave driving. (A) We consider a Josephson qubit
coupled resonantly to a two level system, i.e., the qubit and TLS have equal
energy splittings. As a result of this resonant interaction, the occupation
probability of the excited state of the qubit exhibits beating. Decoherence of
the qubit results when the two level system decays from its excited state by
emitting a phonon. (B) Fluctuations of the two level systems in the oxide
barrier produce fluctuations and 1/f noise in the Josephson junction critical
current I_o. This in turn leads to fluctuations in the qubit energy splitting
that degrades the qubit coherence. We compare our results with experiments on
Josephson junction phase qubits.Comment: 23 pages, Latex, 6 encapsulated postscript figure
One-by-one trap activation in silicon nanowire transistors
Flicker or 1/f noise in metal-oxide-semiconductor field-effect transistors
(MOSFETs) has been identified as the main source of noise at low frequency. It
often originates from an ensemble of a huge number of charges trapping and
detrapping. However, a deviation from the well-known model of 1/f noise is
observed for nanoscale MOSFETs and a new model is required. Here, we report the
observation of one-by-one trap activation controlled by the gate voltage in a
nanowire MOSFET and we propose a new low-frequency-noise theory for nanoscale
FETs. We demonstrate that the Coulomb repulsion between electronically charged
trap sites avoids the activation of several traps simultaneously. This effect
induces a noise reduction by more than one order of magnitude. It decreases
when increasing the electron density in the channel due to the electrical
screening of traps. These findings are technologically useful for any FETs with
a short and narrow channel.Comment: One file with paper and supplementary informatio
Linear Stochastic Models of Nonlinear Dynamical Systems
We investigate in this work the validity of linear stochastic models for
nonlinear dynamical systems. We exploit as our basic tool a previously proposed
Rayleigh-Ritz approximation for the effective action of nonlinear dynamical
systems started from random initial conditions. The present paper discusses
only the case where the PDF-Ansatz employed in the variational calculation is
``Markovian'', i.e. is determined completely by the present values of the
moment-averages. In this case we show that the Rayleigh-Ritz effective action
of the complete set of moment-functions that are employed in the closure has a
quadratic part which is always formally an Onsager-Machlup action. Thus,
subject to satisfaction of the requisite realizability conditions on the noise
covariance, a linear Langevin model will exist which reproduces exactly the
joint 2-time correlations of the moment-functions. We compare our method with
the closely related formalism of principal oscillation patterns (POP), which,
in the approach of C. Penland, is a method to derive such a linear Langevin
model empirically from time-series data for the moment-functions. The
predictive capability of the POP analysis, compared with the Rayleigh-Ritz
result, is limited to the regime of small fluctuations around the most probable
future pattern. Finally, we shall discuss a thermodynamics of statistical
moments which should hold for all dynamical systems with stable invariant
probability measures and which follows within the Rayleigh-Ritz formalism.Comment: 36 pages, 5 figures, seceq.sty for sequential numbering of equations
by sectio
Issues in the Theory of Human Capital : Education as Investment
After a few references to the early literature on human
capital, from Petty via Smith, Engel, and Nicholson to Marshall, various
issues in current theory of human capital are briefly reviewed. They
include questions regarding categories of " tangible human capital" and
"intangible nonhuman capital;" investment in raising children. in
schooling, and in research and development; depreciation of human
capital through obsolescence, loss of strength, illness, retirement, and
death; conflicts between efficiency and equality in the educational
system; wrong educational mix resulting in waste or even net loss; the
problem of complementarity among different kinds of physical and human
capital; and the complexity of econometric rese3rch on comparative
returns to different investments
- …
