1,422 research outputs found

    A novel and precise time domain description of MOSFET low frequency noise due to random telegraph signals

    Full text link
    Nowadays, random telegraph signals play an important role in integrated circuit performance variability, leading for instance to failures in memory circuits. This problem is related to the successive captures and emissions of electrons at the many traps stochastically distributed at the silicon-oxide (Si-SiO2) interface of MOS transistors. In this paper we propose a novel analytical and numerical approach to statistically describe the fluctuations of current due to random telegraph signal in time domain. Our results include two distinct situations: when the density of interface trap density is uniform in energy, and when it is an u-shape curve as prescribed in literature, here described as simple quadratic function. We establish formulas for relative error as function of the parameters related to capture and emission probabilities. For a complete analysis experimental u-shape curves are used and compared with the theoretical aproach

    Fluctuation relations for a driven Brownian particle

    Full text link
    We consider a driven Brownian particle, subject to both conservative and non-conservative applied forces, whose probability evolves according to the Kramers equation. We derive a general fluctuation relation, expressing the ratio of the probability of a given Brownian path in phase space with that of the time-reversed path, in terms of the entropy flux to the heat reservoir. This fluctuation relation implies those of Seifert, Jarzynski and Gallavotti-Cohen in different special cases

    Transport Statistics of Bistable Systems

    Full text link
    We consider the transport statistics of classical bistable systems driven by noise. The stochastic path integral formalism is used to investigate the dynamics and distribution of transmitted charge. Switching rates between the two stable states are found from an instanton calculation, leading to an effective two-state system on a long time scale. In the bistable current range, the telegraph noise dominates the distribution, whose logarithm is found to be universally described by a tilted ellipse.Comment: 4 pages, 3 figures, version to appear in Phys. Rev. Let

    Microscopic Derivation of Causal Diffusion Equation using Projection Operator Method

    Full text link
    We derive a coarse-grained equation of motion of a number density by applying the projection operator method to a non-relativistic model. The derived equation is an integrodifferential equation and contains the memory effect. The equation is consistent with causality and the sum rule associated with the number conservation in the low momentum limit, in contrast to usual acausal diffusion equations given by using the Fick's law. After employing the Markov approximation, we find that the equation has the similar form to the causal diffusion equation. Our result suggests that current-current correlations are not necessarily adequate as the definition of diffusion constants.Comment: 10 pages, 1 figure, Final version published in Phys. Rev.

    Microwave Irradiation Effects on Random Telegraph Signal in a MOSFET

    Full text link
    We report on the change of the characteristic times of the random telegraph signal (RTS) in a MOSFET operated under microwave irradiation up to 40 GHz as the microwave field power is raised. The effect is explained by considering the time dependency of the transition probabilities due to a harmonic voltage generated by the microwave field that couples with the wires connecting the MOSFET. From the dc current excited into the MOSFET by the microwave field we determine the corresponding equivalent drain voltage. The RTS experimental data are in agreement with the prediction obtained with the model, making use of the voltage data measured with the independent dc microwave induced current. We conclude that when operating a MOSFET under microwave irradiation, as in single spin resonance detection, one has to pay attention into the effects related to microwave irradiation dependent RTS changes.Comment: 3 pages, 4 figure

    Decoherence of a Josephson qubit due to coupling to two level systems

    Full text link
    Noise and decoherence are major obstacles to the implementation of Josephson junction qubits in quantum computing. Recent experiments suggest that two level systems (TLS) in the oxide tunnel barrier are a source of decoherence. We explore two decoherence mechanisms in which these two level systems lead to the decay of Rabi oscillations that result when Josephson junction qubits are subjected to strong microwave driving. (A) We consider a Josephson qubit coupled resonantly to a two level system, i.e., the qubit and TLS have equal energy splittings. As a result of this resonant interaction, the occupation probability of the excited state of the qubit exhibits beating. Decoherence of the qubit results when the two level system decays from its excited state by emitting a phonon. (B) Fluctuations of the two level systems in the oxide barrier produce fluctuations and 1/f noise in the Josephson junction critical current I_o. This in turn leads to fluctuations in the qubit energy splitting that degrades the qubit coherence. We compare our results with experiments on Josephson junction phase qubits.Comment: 23 pages, Latex, 6 encapsulated postscript figure

    One-by-one trap activation in silicon nanowire transistors

    Full text link
    Flicker or 1/f noise in metal-oxide-semiconductor field-effect transistors (MOSFETs) has been identified as the main source of noise at low frequency. It often originates from an ensemble of a huge number of charges trapping and detrapping. However, a deviation from the well-known model of 1/f noise is observed for nanoscale MOSFETs and a new model is required. Here, we report the observation of one-by-one trap activation controlled by the gate voltage in a nanowire MOSFET and we propose a new low-frequency-noise theory for nanoscale FETs. We demonstrate that the Coulomb repulsion between electronically charged trap sites avoids the activation of several traps simultaneously. This effect induces a noise reduction by more than one order of magnitude. It decreases when increasing the electron density in the channel due to the electrical screening of traps. These findings are technologically useful for any FETs with a short and narrow channel.Comment: One file with paper and supplementary informatio

    Linear Stochastic Models of Nonlinear Dynamical Systems

    Full text link
    We investigate in this work the validity of linear stochastic models for nonlinear dynamical systems. We exploit as our basic tool a previously proposed Rayleigh-Ritz approximation for the effective action of nonlinear dynamical systems started from random initial conditions. The present paper discusses only the case where the PDF-Ansatz employed in the variational calculation is ``Markovian'', i.e. is determined completely by the present values of the moment-averages. In this case we show that the Rayleigh-Ritz effective action of the complete set of moment-functions that are employed in the closure has a quadratic part which is always formally an Onsager-Machlup action. Thus, subject to satisfaction of the requisite realizability conditions on the noise covariance, a linear Langevin model will exist which reproduces exactly the joint 2-time correlations of the moment-functions. We compare our method with the closely related formalism of principal oscillation patterns (POP), which, in the approach of C. Penland, is a method to derive such a linear Langevin model empirically from time-series data for the moment-functions. The predictive capability of the POP analysis, compared with the Rayleigh-Ritz result, is limited to the regime of small fluctuations around the most probable future pattern. Finally, we shall discuss a thermodynamics of statistical moments which should hold for all dynamical systems with stable invariant probability measures and which follows within the Rayleigh-Ritz formalism.Comment: 36 pages, 5 figures, seceq.sty for sequential numbering of equations by sectio

    Issues in the Theory of Human Capital : Education as Investment

    Get PDF
    After a few references to the early literature on human capital, from Petty via Smith, Engel, and Nicholson to Marshall, various issues in current theory of human capital are briefly reviewed. They include questions regarding categories of " tangible human capital" and "intangible nonhuman capital;" investment in raising children. in schooling, and in research and development; depreciation of human capital through obsolescence, loss of strength, illness, retirement, and death; conflicts between efficiency and equality in the educational system; wrong educational mix resulting in waste or even net loss; the problem of complementarity among different kinds of physical and human capital; and the complexity of econometric rese3rch on comparative returns to different investments
    corecore