744 research outputs found

    Complexity, parallel computation and statistical physics

    Full text link
    The intuition that a long history is required for the emergence of complexity in natural systems is formalized using the notion of depth. The depth of a system is defined in terms of the number of parallel computational steps needed to simulate it. Depth provides an objective, irreducible measure of history applicable to systems of the kind studied in statistical physics. It is argued that physical complexity cannot occur in the absence of substantial depth and that depth is a useful proxy for physical complexity. The ideas are illustrated for a variety of systems in statistical physics.Comment: 21 pages, 7 figure

    Parallel dynamics and computational complexity of the Bak-Sneppen model

    Full text link
    The parallel computational complexity of the Bak-Sneppen evolution model is studied. It is shown that Bak-Sneppen histories can be generated by a massively parallel computer in a time that is polylogarithmic in the length of the history. In this parallel dynamics, histories are built up via a nested hierarchy of avalanches. Stated in another way, the main result is that the logical depth of producing a Bak-Sneppen history is exponentially less than the length of the history. This finding is surprising because the self-organized critical state of the Bak-Sneppen model has long range correlations in time and space that appear to imply that the dynamics is sequential and history dependent. The parallel dynamics for generating Bak-Sneppen histories is contrasted to standard Bak-Sneppen dynamics. Standard dynamics and an alternate method for generating histories, conditional dynamics, are both shown to be related to P-complete natural decision problems implying that they cannot be efficiently implemented in parallel.Comment: 37 pages, 12 figure

    Internal Diffusion-Limited Aggregation: Parallel Algorithms and Complexity

    Get PDF
    The computational complexity of internal diffusion-limited aggregation (DLA) is examined from both a theoretical and a practical point of view. We show that for two or more dimensions, the problem of predicting the cluster from a given set of paths is complete for the complexity class CC, the subset of P characterized by circuits composed of comparator gates. CC-completeness is believed to imply that, in the worst case, growing a cluster of size n requires polynomial time in n even on a parallel computer. A parallel relaxation algorithm is presented that uses the fact that clusters are nearly spherical to guess the cluster from a given set of paths, and then corrects defects in the guessed cluster through a non-local annihilation process. The parallel running time of the relaxation algorithm for two-dimensional internal DLA is studied by simulating it on a serial computer. The numerical results are compatible with a running time that is either polylogarithmic in n or a small power of n. Thus the computational resources needed to grow large clusters are significantly less on average than the worst-case analysis would suggest. For a parallel machine with k processors, we show that random clusters in d dimensions can be generated in O((n/k + log k) n^{2/d}) steps. This is a significant speedup over explicit sequential simulation, which takes O(n^{1+2/d}) time on average. Finally, we show that in one dimension internal DLA can be predicted in O(log n) parallel time, and so is in the complexity class NC

    Stationary states and energy cascades in inelastic gases

    Full text link
    We find a general class of nontrivial stationary states in inelastic gases where, due to dissipation, energy is transfered from large velocity scales to small velocity scales. These steady-states exist for arbitrary collision rules and arbitrary dimension. Their signature is a stationary velocity distribution f(v) with an algebraic high-energy tail, f(v) ~ v^{-sigma}. The exponent sigma is obtained analytically and it varies continuously with the spatial dimension, the homogeneity index characterizing the collision rate, and the restitution coefficient. We observe these stationary states in numerical simulations in which energy is injected into the system by infrequently boosting particles to high velocities. We propose that these states may be realized experimentally in driven granular systems.Comment: 4 pages, 4 figure

    Graphical Representations for Ising Systems in External Fields

    Full text link
    A graphical representation based on duplication is developed that is suitable for the study of Ising systems in external fields. Two independent replicas of the Ising system in the same field are treated as a single four-state (Ashkin-Teller) model. Bonds in the graphical representation connect the Ashkin-Teller spins. For ferromagnetic systems it is proved that ordering is characterized by percolation in this representation. The representation leads immediately to cluster algorithms; some applications along these lines are discussed.Comment: 13 pages amste
    corecore