292 research outputs found
Effects of Confinement on Critical Adsorption: Absence of Critical Depletion for Fluids in Slit Pores
The adsorption of a near-critical fluid confined in a slit pore is
investigated by means of density functional theory and by Monte Carlo
simulation for a Lennard-Jones fluid. Our work was stimulated by recent
experiments for SF_6 adsorbed in a mesoporous glass which showed the striking
phenomenon of critical depletion, i.e. the adsorption excess "Gamma" first
increases but then decreases very rapidly to negative values as the bulk
critical temperature T_c is approached from above along near-critical
isochores. By contrast, our density functional and simulation results, for a
range of strongly attractive wall-fluid potentials, show Gamma monotonically
increasing and eventually saturating as the temperature is lowered towards T_c
along both the critical (rho=rho_c) and sub-critical isochores (rho<\rho_c).
Such behaviour results from the increasingly slow decay of the density profile
away from the walls, into the middle of the slit, as T->T_c. For rho < rho_c we
find that in the fluid the effective bulk field, which is negative and which
favours desorption, is insufficient to dominate the effects of the surface
fields which favour adsorption. We compare this situation with earlier results
for the lattice gas model with a constant (negative) bulk field where critical
depletion was found. Qualitatively different behaviour of the density profiles
and adsorption is found in simulations for intermediate and weakly attractive
wall-fluid potentials but in no case do we observe the critical depletion found
in experiments. We conclude that the latter cannot be accounted for by a single
pore model.Comment: 21 pages Revtex. Submitted to Phys. Rev.
Phase diagram of a model for 3He-4He mixtures in three dimensions
A lattice model of 3He - 4He mixtures which takes into account the continuous
rotational symmetry O(2) of the superfluid degrees of freedom of 4He is studied
in the molecular-field approximation and by Monte Carlo simulations in three
dimensions. In contrast to its two-dimensional version, for reasonable values
of the interaction parameters the resulting phase diagram resembles that
observed experimentally for 3He - 4He mixtures, for which phase separation
occurs as a consequence of the superfluid transition. The corresponding
continuum Ginzburg-Landau model with two order parameters describing 3He- 4He
mixtures near tricriticality is derived from the considered lattice model. All
coupling constants appearing in the continuum model are explicitly expressed in
terms of the mean concentration of 4He, the temperature, and the microscopic
interaction parameters characterizing the lattice system.Comment: 32 pages, 12 figures, submitted to the Phys. Rev.
Current-mediated synchronization of a pair of beating non-identical flagella
The basic phenomenology of experimentally observed synchronization (i.e., a
stochastic phase locking) of identical, beating flagella of a biflagellate alga
is known to be captured well by a minimal model describing the dynamics of
coupled, limit-cycle, noisy oscillators (known as the noisy Kuramoto model). As
demonstrated experimentally, the amplitudes of the noise terms therein, which
stem from fluctuations of the rotary motors, depend on the flagella length.
Here we address the conceptually important question which kind of synchrony
occurs if the two flagella have different lengths such that the noises acting
on each of them have different amplitudes. On the basis of a minimal model,
too, we show that a different kind of synchrony emerges, and here it is
mediated by a current carrying, steady-state; it manifests itself via
correlated "drifts" of phases. We quantify such a synchronization mechanism in
terms of appropriate order parameters and - for an ensemble of
trajectories and for a single realization of noises of duration ,
respectively. Via numerical simulations we show that both approaches become
identical for long observation times . This reveals an ergodic
behavior and implies that a single-realization order parameter is
suitable for experimental analysis for which ensemble averaging is not always
possible.Comment: 10 pages, 2 figure
Critical Casimir interactions around the consolute point of a binary solvent
Spatial confinement of a near-critical medium changes its fluctuation
spectrum and modifies the corresponding order parameter distribution. These
effects result in effective, so-called critical Casimir forces (CCFs) acting on
the confining surfaces. These forces are attractive for like boundary
conditions of the order parameter at the opposing surfaces of the confinement.
For colloidal particles dissolved in a binary liquid mixture acting as a
solvent close to its critical point of demixing, one thus expects the emergence
of phase segregation into equilibrium colloidal liquid and gas phases. We
analyze how such phenomena occur asymmetrically in the whole thermodynamic
neighborhood of the consolute point of the binary solvent. By applying
field-theoretical methods within mean-field approximation and the
semi-empirical de Gennes-Fisher functional, we study the CCFs acting between
planar parallel walls as well as between two spherical colloids and their
dependence on temperature and on the composition of the near-critical binary
mixture. We find that for compositions slightly poor in the molecules
preferentially adsorbed at the surfaces, the CCFs are significantly stronger
than at the critical composition, thus leading to pronounced colloidal
segregation. The segregation phase diagram of the colloid solution following
from the calculated effective pair potential between the colloids agrees
surprisingly well with experiments and simulations
Improved detectivity of pyroelectric detectors
High detectivity single-element SBN pyroelectric detectors were fabricated. The theory and technology developments related to improved detector performance were identified and formulated. Improved methods of material characterization, thinning, mounting, blackening and amplifier matching are discussed. Detectors with detectivities of 1.3 x 10 to the 9th power square root of Hz/watt at 1 Hz are reported. Factors limiting performance and recommendations for future work are discussed
Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project
The research program to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by dip-coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon is reported. The initial effort concentrated on the design and construction of the experimental dip-coating facility. The design was completed and its experimental features are discussed. Current status of the program is reported, including progress toward solar cell junction diffusion and miscellaneous ceramic substrate procurement
Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project
To date, an experimental dip-coating facility was constructed. Using this facility, relatively thin (1 mm) mullite and alumina substrates were successfully dip-coated with 2.5 - 3.0 ohm-cm, p-type silicon with areas of approximately 20 sq cm. The thickness and grain size of these coatings are influenced by the temperature of the melt and the rate at which the substrate is pulled from the melt. One mullite substrate had dendrite-like crystallites of the order of 1 mm wide and 1 to 2 cm long. Their axes were aligned along the direction of pulling. A large variety of substrate materials were purchased or developed enabling the program to commence a substrate definition evaluation. Due to the insulating nature of the substrate, the bottom layer of the p-n junction may have to be made via the top surface. The feasibility of accomplishing this was demonstrated using single crystal wafers
Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project
The technical and economic feasibility of producing solar cell quality sheet silicon by dip-coating one surface of carbonized ceramic substrates with a thin layer of large grain polycrystalline silicon was investigated. The dip-coating methods studied were directed toward a minimum cost process with the ultimate objective of producing solar cells with a conversion efficiency of 10% or greater. The technique shows excellent promise for low cost, labor-saving, scale-up potentialities and would provide an end product of sheet silicon with a rigid and strong supportive backing. An experimental dip-coating facility was designed and constructed, several substrates were successfully dip-coated with areas as large as 25 sq cm and thicknesses of 12 micron to 250 micron. There appears to be no serious limitation on the area of a substrate that could be coated. Of the various substrate materials dip-coated, mullite appears to best satisfy the requirement of the program. An inexpensive process was developed for producing mullite in the desired geometry
Study and Sub-System Optimization of Propulsion and Drive Systems for the Large Civil TiltRotor (LCTR2) Rotorcraft
In a series of study tasks conducted as a part of NASA's Fundamental Aeronautics Program, Rotary Wing Project, Boeing and Rolls-Royce explored propulsion, drive, and rotor system options for the NASA Large Civil Tilt Rotor (LCTR2) concept vehicle. The original objective of this study was to identify engine and drive system configurations to reduce rotor tip speed during cruise conditions and quantify the associated benefits. Previous NASA studies concluded that reducing rotor speed (from 650 fps hover tip speed) during cruise would reduce vehicle gross weight and fuel burn. Initially, rotor cruise speed ratios of 54% of the hover tip speed were of most interest during operation at cruise air speed of 310 ktas. Interim results were previously reported1 for cruise tip speed ratios of 100%, 77%, and 54% of the hover tip speed using engine and/or gearbox features to achieve the reduction. Technology levels from commercial off-the-shelf (COTS), through entry-in-service (EIS) dates of 2025 and 2035 were considered to assess the benefits of advanced technology on vehicle gross weight and fuel burn. This technical paper presents the final study results in terms of vehicle sizing and fuel burn as well as Operational and Support (O&S) costs. New vehicle sizing at rotor tip speed reduced to 65% of hover is presented for engine performance with an EIS 2035 fixed geometry variable speed power turbine. LCTR2 is also evaluated for missions range cases of 400, 600, 800, 1000, and 1200 nautical miles and cruise air speeds of 310, 350 and 375 ktas
- …
