7,324 research outputs found

    Usefulness of VRML building models in a direction finding context

    Get PDF
    This paper describes an experiment which aims to examine the effectiveness and efficiency of a Virtual Reality Modelling Language (VRML) building model compared with equivalent architectural plans, for direction finding purposes. The effectiveness and efficiency issues being primarily investigated were number of tasks completed overall and task completion times. The experiment involved a series of tasks where participants had to find a number of locations/objects in a building unknown to them at the outset of the experiment. Statistically significant results are presented for the benefit of the research community, law enforcement officers and fire fighters where it is clear that in this context, the VRML model led to better task completions than the equivalent architectural plans. Regarding the task completion times, no statistical significance was found. Given the current climate of security issues and terrorist threats, it is important that law enforcement officers have at their disposal the best information possible regarding the layout of a building, whilst keeping costs down. This also applies to fire fighters when rescuing victims. This experiment has shown that a VRML model leads to better task completions in direction finding

    A double main sequence turn-off in the rich star cluster NGC 1846 in the Large Magellanic Cloud

    Full text link
    We report on HST/ACS photometry of the rich intermediate-age star cluster NGC 1846 in the Large Magellanic Cloud, which clearly reveals the presence of a double main sequence turn-off in this object. Despite this, the main sequence, sub-giant branch, and red giant branch are all narrow and well-defined, and the red clump is compact. We examine the spatial distribution of turn-off stars and demonstrate that all belong to NGC 1846 rather than to any field star population. In addition, the spatial distributions of the two sets of turn-off stars may exhibit different central concentrations and some asymmetries. By fitting isochrones, we show that the properties of the colour-magnitude diagram can be explained if there are two stellar populations of equivalent metal abundance in NGC 1846, differing in age by approximately 300 Myr. The absolute ages of the two populations are ~1.9 and ~2.2 Gyr, although there may be a systematic error of up to +/-0.4 Gyr in these values. The metal abundance inferred from isochrone fitting is [M/H] ~ -0.40, consistent with spectroscopic measurements of [Fe/H]. We propose that the observed properties of NGC 1846 can be explained if this object originated via the tidal capture of two star clusters formed separately in a star cluster group in a single giant molecular cloud. This scenario accounts naturally for the age difference and uniform metallicity of the two member populations, as well as the differences in their spatial distributions.Comment: 9 pages, 8 figures, accepted for publication in MNRAS. A version with full resolution figures may be obtained at http://www.roe.ac.uk/~dmy/papers/MN-07-0441-MJ_rv.ps.gz (postscript) or at http://www.roe.ac.uk/~dmy/papers/MN-07-0441-MJ_rv.pdf (PDF

    On the Exponentials of Some Structured Matrices

    Full text link
    In this note explicit algorithms for calculating the exponentials of important structured 4 x 4 matrices are provided. These lead to closed form formulae for these exponentials. The techniques rely on one particular Clifford Algebra isomorphism and basic Lie theory. When used in conjunction with structure preserving similarities, such as Givens rotations, these techniques extend to dimensions bigger than four.Comment: 19 page

    The effect of stellar-mass black holes on the structural evolution of massive star clusters

    Full text link
    We present the results of realistic N-body modelling of massive star clusters in the Magellanic Clouds, aimed at investigating a dynamical origin for the radius-age trend observed in these systems. We find that stellar-mass black holes, formed in the supernova explosions of the most massive cluster stars, can constitute a dynamically important population. If a significant number of black holes are retained (here we assume complete retention), these objects rapidly form a dense core where interactions are common, resulting in the scattering of black holes into the cluster halo, and the ejection of black holes from the cluster. These two processes heat the stellar component, resulting in prolonged core expansion of a magnitude matching the observations. Significant core evolution is also observed in Magellanic Cloud clusters at early times. We find that this does not result from the action of black holes, but can be reproduced by the effects of mass-loss due to rapid stellar evolution in a primordially mass segregated cluster.Comment: Accepted for publication in MNRAS Letters; 2 figures, 1 tabl

    Asymmetric supernova remnants generated by Galactic, massive runaway stars

    Full text link
    After the death of a runaway massive star, its supernova shock wave interacts with the bow shocks produced by its defunct progenitor, and may lose energy, momentum, and its spherical symmetry before expanding into the local interstellar medium (ISM). We investigate whether the initial mass and space velocity of these progenitors can be associated with asymmetric supernova remnants. We run hydrodynamical models of supernovae exploding in the pre-shaped medium of moving Galactic core-collapse progenitors. We find that bow shocks that accumulate more than about 1.5 Mo generate asymmetric remnants. The shock wave first collides with these bow shocks 160-750 yr after the supernova, and the collision lasts until 830-4900 yr. The shock wave is then located 1.35-5 pc from the center of the explosion, and it expands freely into the ISM, whereas in the opposite direction it is channelled into the region of undisturbed wind material. This applies to an initially 20 Mo progenitor moving with velocity 20 km/s and to our initially 40 Mo progenitor. These remnants generate mixing of ISM gas, stellar wind and supernova ejecta that is particularly important upstream from the center of the explosion. Their lightcurves are dominated by emission from optically-thin cooling and by X-ray emission of the shocked ISM gas. We find that these remnants are likely to be observed in the [OIII] lambda 5007 spectral line emission or in the soft energy-band of X-rays. Finally, we discuss our results in the context of observed Galactic supernova remnants such as 3C391 and the Cygnus Loop.Comment: 21 pages, 16 figure

    Chemical evolution of star clusters

    Full text link
    I discuss the chemical evolution of star clusters, with emphasis on old globular clusters, in relation to their formation histories. Globular clusters clearly formed in a complex fashion, under markedly different conditions from any younger clusters presently known. Those special conditions must be linked to the early formation epoch of the Galaxy and must not have occurred since. While a link to the formation of globular clusters in dwarf galaxies has been suggested, present-day dwarf galaxies are not representative of the gravitational potential wells within which the globular clusters formed. Instead, a formation deep within the proto-Galaxy or within dark-matter minihaloes might be favoured. Not all globular clusters may have formed and evolved similarly. In particular, we may need to distinguish Galactic halo from Galactic bulge clusters.Comment: 27 pages, 2 figures. To appear as invited review article in a special issue of the Phil. Trans. Royal Soc. A: Ch. 6 "Star clusters as tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed. LaTeX, requires rspublic.cls style fil
    corecore