338 research outputs found

    Identification of novel subgroup a variants with enhanced receptor binding and replicative capacity in primary isolates of anaemogenic strains of feline leukaemia virus

    Get PDF
    <b>BACKGROUND:</b> The development of anaemia in feline leukaemia virus (FeLV)-infected cats is associated with the emergence of a novel viral subgroup, FeLV-C. FeLV-C arises from the subgroup that is transmitted, FeLV-A, through alterations in the amino acid sequence of the receptor binding domain (RBD) of the envelope glycoprotein that result in a shift in the receptor usage and the cell tropism of the virus. The factors that influence the transition from subgroup A to subgroup C remain unclear, one possibility is that a selective pressure in the host drives the acquisition of mutations in the RBD, creating A/C intermediates with enhanced abilities to interact with the FeLV-C receptor, FLVCR. In order to understand further the emergence of FeLV-C in the infected cat, we examined primary isolates of FeLV-C for evidence of FeLV-A variants that bore mutations consistent with a gradual evolution from FeLV-A to FeLV-C.<p></p> <b>RESULTS:</b> Within each isolate of FeLV-C, we identified variants that were ostensibly subgroup A by nucleic acid sequence comparisons, but which bore mutations in the RBD. One such mutation, N91D, was present in multiple isolates and when engineered into a molecular clone of the prototypic FeLV-A (Glasgow-1), enhanced replication was noted in feline cells. Expression of the N91D Env on murine leukaemia virus (MLV) pseudotypes enhanced viral entry mediated by the FeLV-A receptor THTR1 while soluble FeLV-A Env bearing the N91D mutation bound more efficiently to mouse or guinea pig cells bearing the FeLV-A and -C receptors. Long-term in vitro culture of variants bearing the N91D substitution in the presence of anti-FeLV gp70 antibodies did not result in the emergence of FeLV-C variants, suggesting that additional selective pressures in the infected cat may drive the subsequent evolution from subgroup A to subgroup C.<p></p> <b>CONCLUSIONS:</b> Our data support a model in which variants of FeLV-A, bearing subtle differences in the RBD of Env, may be predisposed towards enhanced replication in vivo and subsequent conversion to FeLV-C. The selection pressures in vivo that drive the emergence of FeLV-C in a proportion of infected cats remain to be established

    A rocky planet transiting a nearby low-mass star

    Full text link
    M-dwarf stars -- hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun -- are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere.Comment: Published in Nature on 12 November 2015, available at http://dx.doi.org/10.1038/nature15762. This is the authors' version of the manuscrip

    Planet Populations as a Function of Stellar Properties

    Full text link
    Exoplanets around different types of stars provide a window into the diverse environments in which planets form. This chapter describes the observed relations between exoplanet populations and stellar properties and how they connect to planet formation in protoplanetary disks. Giant planets occur more frequently around more metal-rich and more massive stars. These findings support the core accretion theory of planet formation, in which the cores of giant planets form more rapidly in more metal-rich and more massive protoplanetary disks. Smaller planets, those with sizes roughly between Earth and Neptune, exhibit different scaling relations with stellar properties. These planets are found around stars with a wide range of metallicities and occur more frequently around lower mass stars. This indicates that planet formation takes place in a wide range of environments, yet it is not clear why planets form more efficiently around low mass stars. Going forward, exoplanet surveys targeting M dwarfs will characterize the exoplanet population around the lowest mass stars. In combination with ongoing stellar characterization, this will help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet

    A genome-wide association study of corneal astigmatism: The CREAM Consortium

    Get PDF
    PURPOSE: To identify genes and genetic markers associated with corneal astigmatism. METHODS: A meta-analysis of genome-wide association studies (GWASs) of corneal astigmatism undertaken for 14 European ancestry (n=22,250) and 8 Asian ancestry (n=9,120) cohorts was performed by the Consortium for Refractive Error and Myopia. Cases were defined as having >0.75 diopters of corneal astigmatism. Subsequent gene-based and gene-set analyses of the meta-analyzed results of European ancestry cohorts were performed using VEGAS2 and MAGMA software. Additionally, estimates of single nucleotide polymorphism (SNP)-based heritability for corneal and refractive astigmatism and the spherical equivalent were calculated for Europeans using LD score regression. RESULTS: The meta-analysis of all cohorts identified a genome-wide significant locus near the platelet-derived growth factor receptor alpha (PDGFRA) gene: top SNP: rs7673984, odds ratio=1.12 (95% CI:1.08–1.16), p=5.55×10−9. No other genome-wide significant loci were identified in the combined analysis or European/Asian ancestry-specific analyses. Gene-based analysis identified three novel candidate genes for corneal astigmatism in Europeans—claudin-7 (CLDN7), acid phosphatase 2, lysosomal (ACP2), and TNF alpha-induced protein 8 like 3 (TNFAIP8L3). CONCLUSIONS: In addition to replicating a previously identified genome-wide significant locus for corneal astigmatism near the PDGFRA gene, gene-based analysis identified three novel candidate genes, CLDN7, ACP2, and TNFAIP8L3, that warrant further investigation to understand their role in the pathogenesis of corneal astigmatism. The much lower number of genetic variants and genes demonstrating an association with corneal astigmatism compared to published spherical equivalent GWAS analyses suggest a greater influence of rare genetic variants, non-additive genetic effects, or environmental factors in the development of astigmatism

    Measurements of daily energy intake and total energy expenditure in people with dementia in care homes: the use of wearable technology.

    Get PDF
    Objectives: To estimate daily total energy expenditure (TEE) using a physical activity monitor, combined with dietary assessment of energy intake to assess the relationship between daily energy expenditure and patterns of activity with energy intake in people with dementia living in care homes. Design and setting: A cross-sectional study in care homes in the UK. Participants: Twenty residents with confirmed dementia diagnosis were recruited from two care homes that specialised in dementia care. Measurements: A physical activity monitor (Sensewear TM Armband , Body Media, Pittsburgh, PA) was employed to objectively determine total energy expenditure, sleep duration and physical activity. The armband was placed around the left upper triceps for up to 7 days. Energy intake was determined by weighing all food and drink items over 4 days (3 weekdays and 1 weekend day) including measurements of food wastage. Results: The mean age was 78.7 (SD ± 11.8) years, Body Mass Index (BMI) 23.0 (SD ± 4.2) kg/m2 ; 50% were women. Energy intake (mean 7.4; SD ± 2.6) MJ/d) was correlated with TEE (mean 7.6; SD ± 1.8 MJ/d; r=0.49, p<0.05). Duration of sleeping ranged from 0.4-12.5 (mean 6.1) hrs/d and time spent lying down was 1.3-16.0 (8.3) hrs/d. On average residents spent 17.9 (6.3-23.4) hrs/d undertaking sedentary activity. TEE was correlated with BMI (r=0.52, p<0.05) and body weight (r=0.81, p<0.001) but inversely related to sleep duration (r=-0.59, p<0.01) and time lying down (r=-0.62, p<0.01). Multiple linear regression analysis revealed that after taking BMI, sleep duration and time spent lying down into account, TEE was no longer correlated with energy intake. Conclusions: The results show the extent to which body mass, variable activity and sleep patterns may be contributing to TEE and together with reduced energy intake, energy requirements were not satisfied. Thus wearable technology has the potential to offer real-time monitoring to provide appropriate nutrition management that is more person-centred to prevent weight loss in dementi

    No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via the DOI in this record.Sunspots are cool areas caused by strong surface magnetic fields inhibiting convection. Moreover, strong magnetic fields can alter the average atmospheric structure , degrading our ability to measure stellar masses and ages. Stars more active than the Sun have more and stronger dark spots than in the solar case, including on the rotational pole itself. Doppler imaging, which has so far produced the most detailed images of surface structures on other stars than the Sun, cannot always distinguish the hemisphere in which the starspots are located, especially in the equatorial region and if the data quality is not optimal . This leads to problems in investigating the north-south distribution of starspot active latitudes (those latitudes with more spot activity), which are crucial constraints of dynamo theory. Polar spots, inferred only from Doppler tomography, could plausibly be observational artifacts, casting some doubt on their very existence. Here we report imaging of the old, magnetically-active star ζ Andromedae using long-baseline infrared interferometry. In our data, a dark polar spot is seen in each of two epochs, while lower-latitude spot structures in both hemispheres do not persist between observations revealing global starspot asymmetries. The north-south symmetry of active latitudes observed on the Sun is absent on ζ And, which hosts global spot patterns that cannot be produced by solar-type dynamos.National Science Foundation (NSF)Hungarian Academy of Science

    Predicting the Electron Requirement for Carbon Fixation in Seas and Oceans

    Get PDF
    Marine phytoplankton account for about 50% of all global net primary productivity (NPP). Active fluorometry, mainly Fast Repetition Rate fluorometry (FRRf), has been advocated as means of providing high resolution estimates of NPP. However, not measuring CO2-fixation directly, FRRf instead provides photosynthetic quantum efficiency estimates from which electron transfer rates (ETR) and ultimately CO2-fixation rates can be derived. Consequently, conversions of ETRs to CO2-fixation requires knowledge of the electron requirement for carbon fixation (Φe,C, ETR/CO2 uptake rate) and its dependence on environmental gradients. Such knowledge is critical for large scale implementation of active fluorescence to better characterise CO2-uptake. Here we examine the variability of experimentally determined Φe,C values in relation to key environmental variables with the aim of developing new working algorithms for the calculation of Φe,C from environmental variables. Coincident FRRf and 14C-uptake and environmental data from 14 studies covering 12 marine regions were analysed via a meta-analytical, non-parametric, multivariate approach. Combining all studies, Φe,C varied between 1.15 and 54.2 mol e- (mol C)-1 with a mean of 10.9±6.91 mol e- mol C)-1. Although variability of Φe,C was related to environmental gradients at global scales, region-specific analyses provided far improved predictive capability. However, use of regional Φe,C algorithms requires objective means of defining regions of interest, which remains challenging. Considering individual studies and specific small-scale regions, temperature, nutrient and light availability were correlated with Φe,C albeit to varying degrees and depending on the study/region and the composition of the extant phytoplankton community. At the level of large biogeographic regions and distinct water masses, Φe,C was related to nutrient availability, chlorophyll, as well as temperature and/or salinity in most regions, while light availability was also important in Baltic Sea and shelf waters. The novel Φe,C algorithms provide a major step forward for widespread fluorometry-based NPP estimates and highlight the need for further studying the natural variability of Φe,C to verify and develop algorithms with improved accuracy. © 2013 Lawrenz et al

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore