101 research outputs found
Very high energy particle acceleration powered by the jets of the microquasar SS 433
SS 433 is a binary system containing a supergiant star that is overflowing
its Roche lobe with matter accreting onto a compact object (either a black hole
or neutron star). Two jets of ionized matter with a bulk velocity of
extend from the binary, perpendicular to the line of sight, and
terminate inside W50, a supernova remnant that is being distorted by the jets.
SS 433 differs from other microquasars in that the accretion is believed to be
super-Eddington, and the luminosity of the system is erg
s. The lobes of W50 in which the jets terminate, about 40 pc from the
central source, are expected to accelerate charged particles, and indeed radio
and X-ray emission consistent with electron synchrotron emission in a magnetic
field have been observed. At higher energies (>100 GeV), the particle fluxes of
rays from X-ray hotspots around SS 433 have been reported as flux
upper limits. In this energy regime, it has been unclear whether the emission
is dominated by electrons that are interacting with photons from the cosmic
microwave background through inverse-Compton scattering or by protons
interacting with the ambient gas. Here we report TeV -ray observations
of the SS 433/W50 system where the lobes are spatially resolved. The TeV
emission is localized to structures in the lobes, far from the center of the
system where the jets are formed. We have measured photon energies of at least
25 TeV, and these are certainly not Doppler boosted, because of the viewing
geometry. We conclude that the emission from radio to TeV energies is
consistent with a single population of electrons with energies extending to at
least hundreds of TeV in a magnetic field of ~micro-Gauss.Comment: Preprint version of Nature paper. Contacts: S. BenZvi, B. Dingus, K.
Fang, C.D. Rho , H. Zhang, H. Zho
Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.
Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
Refining the transit-timing and photometric analysis of TRAPPIST-1: Masses, Radii, densities, dynamics, and ephemerides
We have collected transit times for the TRAPPIST-1 system with the Spitzer
Space Telescope over four years. We add to these ground-based, HST and K2
transit time measurements, and revisit an N-body dynamical analysis of the
seven-planet system using our complete set of times from which we refine the
mass ratios of the planets to the star. We next carry out a photodynamical
analysis of the Spitzer light curves to derive the density of the host star and
the planet densities. We find that all seven planets' densities may be
described with a single rocky mass-radius relation which is depleted in iron
relative to Earth, with Fe 21 wt% versus 32 wt% for Earth, and otherwise
Earth-like in composition. Alternatively, the planets may have an Earth-like
composition, but enhanced in light elements, such as a surface water layer or a
core-free structure with oxidized iron in the mantle. We measure planet masses
to a precision of 3-5%, equivalent to a radial-velocity (RV) precision of 2.5
cm/sec, or two orders of magnitude more precise than current RV capabilities.
We find the eccentricities of the planets are very small; the orbits are
extremely coplanar; and the system is stable on 10 Myr timescales. We find
evidence of infrequent timing outliers which we cannot explain with an eighth
planet; we instead account for the outliers using a robust likelihood function.
We forecast JWST timing observations, and speculate on possible implications of
the planet densities for the formation, migration and evolution of the planet
system
Roles for the Conserved Spc105p/Kre28p Complex in Kinetochore-Microtubule Binding and the Spindle Assembly Checkpoint
Kinetochores attach sister chromatids to microtubules of the mitotic spindle and orchestrate chromosome disjunction at anaphase. Although S. cerevisiae has the simplest known kinetochores, they nonetheless contain approximately 70 subunits that assemble on centromeric DNA in a hierarchical manner. Developing an accurate picture of the DNA-binding, linker and microtubule-binding layers of kinetochores, including the functions of individual proteins in these layers, is a key challenge in the field of yeast chromosome segregation. Moreover, comparison of orthologous proteins in yeast and humans promises to extend insight obtained from the study of simple fungal kinetochores to complex animal cell kinetochores.We show that S. cerevisiae Spc105p forms a heterotrimeric complex with Kre28p, the likely orthologue of the metazoan kinetochore protein Zwint-1. Through systematic analysis of interdependencies among kinetochore complexes, focused on Spc105p/Kre28p, we develop a comprehensive picture of the assembly hierarchy of budding yeast kinetochores. We find Spc105p/Kre28p to comprise the third linker complex that, along with the Ndc80 and MIND linker complexes, is responsible for bridging between centromeric heterochromatin and kinetochore MAPs and motors. Like the Ndc80 complex, Spc105p/Kre28p is also essential for kinetochore binding by components of the spindle assembly checkpoint. Moreover, these functions are conserved in human cells.Spc105p/Kre28p is the last of the core linker complexes to be analyzed in yeast and we show it to be required for kinetochore binding by a discrete subset of kMAPs (Bim1p, Bik1p, Slk19p) and motors (Cin8p, Kar3p), all of which are nonessential. Strikingly, dissociation of these proteins from kinetochores prevents bipolar attachment, even though the Ndc80 and DASH complexes, the two best-studied kMAPs, are still present. The failure of Spc105 deficient kinetochores to bind correctly to spindle microtubules and to recruit checkpoint proteins in yeast and human cells explains the observed severity of missegregation phenotypes
Diabetes IN develOpment (DINO): the bio-psychosocial, family functioning and parental well-being of youth with type 1 diabetes: a longitudinal cohort study design
The relationship between physical aspects of quality of life and extreme levels of regular physical activity in adults
Cortisol, cognition and the ageing prefrontal cortex
The structural and functional decline of the ageing human brain varies by brain
region, cognitive function and individual. The underlying biological mechanisms are
poorly understood. One potentially important mechanism is exposure to
glucocorticoids (GCs; cortisol in humans); GC production is increasingly varied with
age in humans, and chronic exposure to high levels is hypothesised to result in
cognitive decline via cerebral remodelling. However, studies of GC exposure in
humans are scarce and methodological differences confound cross-study comparison.
Furthermore, there has been little focus on the effects of GCs on the frontal lobes and
key white matter tracts in the ageing brain. This thesis therefore examines
relationships among cortisol levels, structural brain measures and cognitive
performance in 90 healthy, elderly community-dwelling males from the Lothian
Birth Cohort 1936. Salivary cortisol samples characterised diurnal (morning and
evening) and reactive profiles (before and after a cognitive test battery). Structural
variables comprised Diffusion Tensor Imaging measures of major brain tracts and a
novel manual parcellation method for the frontal lobes. The latter was based on a
systematic review of current manual methods in the context of putative function and
cytoarchitecture. Manual frontal lobe brain parcellation conferred greater spatial and
volumetric accuracy when compared to both single- and multi-atlas parcellation at
the lobar level. Cognitive ability was assessed via tests of general cognitive ability,
and neuropsychological tests thought to show differential sensitivity to the integrity
of frontal lobe sub-regions. The majority of, but not all frontal lobe test scores shared
considerable overlap with general cognitive ability, and cognitive scores correlated
most consistently with the volumes of the anterior cingulate. This is discussed in
light of the diverse connective profile of the cingulate and a need to integrate
information over more diffuse cognitive networks according to proposed de-differentiation
or compensation in ageing. Individuals with higher morning, evening
or pre-test cortisol levels showed consistently negative relationships with specific
regional volumes and tract integrity. Participants whose cortisol levels increased
between the start and end of cognitive testing showed selectively larger regional
volumes and lower tract diffusivity (correlation magnitudes <.44). The significant
relationships between cortisol levels and cognition indicated that flatter diurnal
slopes or higher pre-test levels related to poorer test performance. In contrast, higher
levels in the morning generally correlated with better scores (correlation magnitudes
<.25). Interpretation of all findings was moderated by sensitivity to type I error,
given the large number of comparisons conducted. Though there were limited
candidates for mediation analysis, cortisol-function relationships were partially
mediated by tract integrity (but not sub-regional frontal volumes) for memory and
post-error slowing. This thesis offers a novel perspective on the complex interplay
among glucocorticoids, cognition and the structure of the ageing brain. The findings
suggest some role for cortisol exposure in determining age-related decline in
complex cognition, mediated via brain structure
Measurement of Λb0 , Λc+ , and Λ decay parameters using Λb0→Λc+h− decays
A comprehensive study of the angular distributions in the bottom-baryon decays
Λ0
b → Λ
c+h−(h = π, K), followed by Λþ
c → Λhþ with Λ → pπ− or Λþ
c → pK0
S decays, is performed
using a data sample of proton-proton collisions corresponding to an integrated luminosity of 9 fb−1
collected by the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV. The decay parameters
and the associated charge-parity (CP) asymmetries are measured, with no significant CP violation
observed. For the first time, the Λ0
b → Λþ
c h− decay parameters are measured. The most precise
measurements of the decay parameters α, β, and γ are obtained for Λþ
c decays and an independent
measurement of the decay parameters for the strange-baryon Λ decay is provided. The results deepen our
understanding of weak decay dynamics in baryon decays
- …
