117 research outputs found
Enforcing Termination of Interprocedural Analysis
Interprocedural analysis by means of partial tabulation of summary functions
may not terminate when the same procedure is analyzed for infinitely many
abstract calling contexts or when the abstract domain has infinite strictly
ascending chains. As a remedy, we present a novel local solver for general
abstract equation systems, be they monotonic or not, and prove that this solver
fails to terminate only when infinitely many variables are encountered. We
clarify in which sense the computed results are sound. Moreover, we show that
interprocedural analysis performed by this novel local solver, is guaranteed to
terminate for all non-recursive programs --- irrespective of whether the
complete lattice is infinite or has infinite strictly ascending or descending
chains
On the homomorphism order of labeled posets
Partially ordered sets labeled with k labels (k-posets) and their
homomorphisms are examined. We give a representation of directed graphs by
k-posets; this provides a new proof of the universality of the homomorphism
order of k-posets. This universal order is a distributive lattice. We
investigate some other properties, namely the infinite distributivity, the
computation of infinite suprema and infima, and the complexity of certain
decision problems involving the homomorphism order of k-posets. Sublattices are
also examined.Comment: 14 page
A representation theorem for MV-algebras
An {\em MV-pair} is a pair where is a Boolean algebra and is
a subgroup of the automorphism group of satisfying certain conditions. Let
be the equivalence relation on naturally associated with . We
prove that for every MV-pair , the effect algebra is an MV-
effect algebra. Moreover, for every MV-effect algebra there is an MV-pair
such that is isomorphic to
Zwischen Tradition und Innovation � Historische Plätze in der Bundesrepublik Deutschland nach 1945
Als Schauplätze historischer Ereignisse und Zentren modernen städtischen Lebens sind historische Plätze wichtige Identifikationsorte einer Stadt. Aufgrund ihrer besonderen Bedeutung wurden an sie immer besondere architektonische und städtebauliche Herausforderungen gestellt. Dies gilt um so mehr für die historischen Plätze in der Bundesrepublik nach den flächendeckenden Zerstörungen des Zweiten Weltkrieges. Die Arbeit untersucht die Rolle, welche Plätze als Träger historischer Kontinuität im Aufbauprozess seit 1945 spielen, und mit welchen gestalterischen Mitteln ihrer besonderer Bedeutung gerecht zu werden versucht wurde. Insbesondere wird dabei das Bemühen von Traditionalismus und von Moderne um die Gestaltungshoheit über den Identifikationsraum Platz nachgezeichnet
Exploring Grades 3-5 Mathematics Activities Found Online
We investigate resources on TeachersPayTeachers and discuss how what is available affects our teaching practices
- …
