899 research outputs found
A compact 90 kilowatt electric heat source for heating inert gases to 1700 F
Design and fabrication of compact electric heat source for heating inert gase
Interplay of internal stresses, electric stresses and surface diffusion in polymer films
We investigate two destabilization mechanisms for elastic polymer films and
put them into a general framework: first, instabilities due to in-plane stress
and second due to an externally applied electric field normal to the film's
free surface. As shown recently, polymer films are often stressed due to
out-of-equilibrium fabrication processes as e.g. spin coating. Via an
Asaro-Tiller-Grinfeld mechanism as known from solids, the system can decrease
its energy by undulating its surface by surface diffusion of polymers and
thereby relaxing stresses. On the other hand, application of an electric field
is widely used experimentally to structure thin films: when the electric
Maxwell surface stress overcomes surface tension and elastic restoring forces,
the system undulates with a wavelength determined by the film thickness. We
develop a theory taking into account both mechanisms simultaneously and discuss
their interplay and the effects of the boundary conditions both at the
substrate and the free surface.Comment: 14 pages, 7 figures, 1 tabl
Nonlinear viscoelasticity of metastable complex fluids
Many metastable complex fluids such as colloidal glasses and gels show
distinct nonlinear viscoelasticity with increasing oscillatory-strain
amplitude; the storage modulus decreases monotonically as the strain amplitude
increases whereas the loss modulus has a distinct peak before it decreases at
larger strains. We present a qualitative argument to explain this ubiquitous
behavior and use mode coupling theory (MCT) to confirm it. We compare
theoretical predictions to the measured nonlinear viscoelasticity in a dense
hard sphere colloidal suspensions; reasonable agreement is obtained. The
argument given here can be used to obtain new information about linear
viscoelasticity of metastable complex fluids from nonlinear strain
measurements.Comment: 7 pages, 3 figures, accepted for publication in Europhys. Let
Vortex jamming in superconductors and granular rheology
We demonstrate that a highly frustrated anisotropic Josephson junction
array(JJA) on a square lattice exhibits a zero-temperature jamming transition,
which shares much in common with those in granular systems. Anisotropy of the
Josephson couplings along the horizontal and vertical directions plays roles
similar to normal load or density in granular systems. We studied numerically
static and dynamic response of the system against shear, i. e. injection of
external electric current at zero temperature. Current-voltage curves at
various strength of the anisotropy exhibit universal scaling features around
the jamming point much as do the flow curves in granular rheology, shear-stress
vs shear-rate. It turns out that at zero temperature the jamming transition
occurs right at the isotropic coupling and anisotropic JJA behaves as an exotic
fragile vortex matter : it behaves as superconductor (vortex glass) into one
direction while normal conductor (vortex liquid) into the other direction even
at zero temperature. Furthermore we find a variant of the theoretical model for
the anisotropic JJA quantitatively reproduces universal master flow-curves of
the granular systems. Our results suggest an unexpected common paradigm
stretching over seemingly unrelated fields - the rheology of soft materials and
superconductivity.Comment: 10 pages, 5 figures. To appear in New Journal of Physic
Clustering of Entanglement Points in Highly Strained Polymer Melts
Polymer melts undergoing large deformation by uniaxial elongation are studied
by molecular dynamics simulations of bead-spring chains in melts. Applying a
primitive path analysis to strongly deformed polymer melts, the role of
topological constrains in highly entangled polymer melts is investigated and
quantified. We show that the over-all, large scale conformations of the
primitive paths (PPs) of stretched chains follow affine deformation while the
number and the distribution of entanglement points along the PPs do not. Right
after deformation, PPs of chains retract in both directions parallel and
perpendicular to the elongation. Upon further relaxation we observe a
long-lived clustering of entanglement points. Together with the delayed
relaxation time this leads to a metastable inhomogeneous distribution of
topological constraints in the melts.Comment: 28 pages, 14 figure
How Dilute are Dilute Solutions in Extensional Flows?
Submitted to J. Rheol.We investigate the concentration-dependence of the characteristic relaxation time of
dilute polymer solutions in transient uniaxial elongational flow. A series of monodisperse polystyrene solutions of five different molecular weights (1.8×10^6 ≤ M ≤ 8.3×10^6 g/mol) with concentrations spanning five orders of magnitude were dissolved in two solvents of differing solvent quality (diethyl phthalate and oligomeric styrene). Optical measurements of the rate of filament thinning and the time to break-up in each fluid are used to determine the characteristic relaxation time. A lower sensitivity limit for the measurements was determined experimentally and confirmed by comparison to numerical calculations.
Above this sensitivity limit we show that the effective relaxation time of moderately
dilute solutions (0.01 ≤ c/c* ≤ 1) in transient extensional flow rises substantially above the fitted value of the relaxation time extracted from small amplitude oscillatory shear flow and above the Zimm relaxation time computed from kinetic theory and intrinsic viscosity
measurements. This effective relaxation time exhibits a power-law scaling with the reduced
concentration (c/c*) and the magnitude of the exponent varies with the thermodynamic quality of the solvent. This scaling appears to be roughly consistent to that predicted when the dynamics of the partially elongated and overlapping polymer chains are described within the framework of blob theories for semi-dilute solutions.NASA Microgravity Fluid Dynamic
Decoupling the effects of shear and extensional flows on the alignment of colloidal rods
Cellulose nanocrystals (CNC) can be considered as model colloidal rods and
have practical applications in the formation of soft materials with tailored
anisotropy. Here, we employ two contrasting microfluidic devices to
quantitatively elucidate the role of shearing and extensional flows on the
alignment of a dilute CNC dispersion. Characterization of the flow field by
micro-particle image velocimetry is coupled to flow-induced birefringence
analysis to quantify the deformation rate--alignment relationship. The
deformation rate required for CNC alignment is 4 smaller in extension
than in shear. Alignment in extension is independent of the deformation rate
magnitude, but is either 0 or 90 to the flow, depending on its
sign. In shear flow the colloidal rods orientate progressively towards
0 as the deformation rate magnitude increases. Our results decouple the
effects of shearing and extensional kinematics at aligning colloidal rods,
establishing coherent guidelines for the manufacture of structured soft
materials
Inverse lift: a signature of the elasticity of complex fluids?
To understand the mechanics of a complex fluid such as a foam we propose a
model experiment (a bidimensional flow around an obstacle) for which an
external sollicitation is applied, and a local response is measured,
simultaneously. We observe that an asymmetric obstacle (cambered airfoil
profile) experiences a downards lift, opposite to the lift usually known (in a
different context) in aerodynamics. Correlations of velocity, deformations and
pressure fields yield a clear explanation of this inverse lift, involving the
elasticity of the foam. We argue that such an inverse lift is likely common to
complex fluids with elasticity.Comment: 4 pages, 4 figures, revised version, submitted to PR
Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress)
Large amplitude oscillatory shear (LAOS) is used as a tool to probe the nonlinear rheological response of a model elasto-viscoplastic material (a Carbopol microgel). In contrast to most recent studies, these large amplitude measurements are carried out in a stress-controlled manner. We outline a descriptive framework of characterization measures for nonlinear rheology under stress-controlled LAOS, and this is contrasted experimentally to the strain-controlled framework that is more commonly used. We show that this stress-controlled methodology allows for a physically intuitive interpretation of the yielding behavior of elasto-viscoplastic materials. The insight gained into the material behavior through these nonlinear measures is then used to develop two constitutive models that prescribe the rheological response of the Carbopol microgel. We show that these two successively more sophisticated constitutive models, which are based on the idea of strain decomposition, capture in a compact manner the important features of the nonlinear rheology of the microgel. The second constitutive model, which incorporates the concept of kinematic hardening, embodies all of the essential behaviors exhibited by Carbopol. These include elasto-viscoplastic creep and time-dependent viscosity plateaus below a critical stress, a viscosity bifurcation at the critical stress, and Herschel–Bulkley flow behavior at large stresses
- …
