398 research outputs found

    Rapidly Evolving Circularly Polarized Emission during the 1994 Outburst of GRO J1665-40

    Get PDF
    We report the detection of circular polarization during the 1994 outburst of the Galactic microquasar GRO J1655-40. The circular polarization is clearly detected at 1.4 and 2.4GHz, but not at 4.8 and 8.4GHz, where its magnitude never exceeds 5 mJy. Both the sign and magnitude of the circular polarization evolve during the outburst. The time dependence and magnitude of the polarized emission can be qualitatively explained by a model based on synchrotron emission from the outbursts, but is most consistent with circular polarization arising from propagation effects through the relativistic plasma surrounding the object.Comment: 8 pages, 3 figs., A&A accepte

    Scattering of Gravitational Waves by the Weak Gravitational Fields of Lens Objects

    Full text link
    We consider the scattering of the gravitational waves by the weak gravitational fields of lens objects. We obtain the scattered gravitational waveform by treating the gravitational potential of the lens to first order, i.e. using the Born approximation. We find that the effect of scattering on the waveform is roughly given by the Schwarzschild radius of the lens divided by the wavelength of gravitational wave for a compact lens object. If the lenses are smoothly distributed, the effect of scattering is of the order of the convergence field κ\kappa along the line of sight to the source. In the short wavelength limit, the amplitude is magnified by 1+κ1+\kappa, which is consistent with the result in weak gravitational lensing.Comment: 4 pages, 2 figures, A&A Letters, in press, minor changes, references adde

    Observation of the Faraday effect via beam deflection in a longitudinal magnetic field

    Get PDF
    We report the observation of the magnetic field induced circular differential deflection of light at the interface of a Faraday medium. The difference in the angles of refraction or reflection between the two circular polarization components is a function of the magnetic field strength and the Verdet constant. The reported phenomena permit the observation of the Faraday effect not via polarization rotation in transmission, but via changes in the propagation direction in refraction or in reflection. An unpolarized light beam is predicted to split into its two circular polarization components. The light deflection arises within a few wavelengths at the interface and is therefore independent of pathlength

    Circularly polarized resonant soft x-ray diffraction study of helical magnetism in hexaferrite

    Full text link
    Magnetic spiral structures can exhibit ferroelectric moments as recently demonstrated in various multiferroic materials. In such cases the helicity of the magnetic spiral is directly correlated with the direction of the ferroelectric moment and measurement of the helicity of magnetic structures is of current interest. Soft x-ray resonant diffraction is particularly advantageous because it combines element selectivity with a large magnetic cross-section. We calculate the polarization dependence of the resonant magnetic x-ray cross-section (electric dipole transition) for the basal plane magnetic spiral in hexaferrite Ba0.8Sr1.2Zn2Fe12O22 and deduce its domain population using circular polarized incident radiation. We demonstrate there is a direct correlation between the diffracted radiation and the helicity of the magnetic spiral.Comment: 4 pages, 4 figure

    On the reliability of polarization estimation using Rotation Measure Synthesis

    Get PDF
    We benchmark the reliability of the Rotation Measure (RM) synthesis algorithm using the 1005 Centaurus A field sources of Feain et al. (2009). The RM synthesis solutions are compared with estimates of the polarization parameters using traditional methods. This analysis provides verification of the reliability of RM synthesis estimates. We show that estimates of the polarization parameters can be made at lower S/N if the range of RMs is bounded, but reliable estimates of individual sources with unusual RMs require unconstrainted solutions and higher S/N. We derive from first principles the statistical properties of the polarization amplitude associated with RM synthesis in the presence of noise. The amplitude distribution depends explicitly on the amplitude of the underlying (intrinsic) polarization signal. Hence it is necessary to model the underlying polarization signal distribution in order to estimate the reliability and errors in polarization parameter estimates. We introduce a Bayesian method to derive the distribution of intrinsic amplitudes based on the distribution of measured amplitudes. The theoretically-derived distribution is compared with the empirical data to provide quantitative estimates of the probability that an RM synthesis solution is correct as a function of S/N. We provide quantitative estimates of the probability that any given RM synthesis solution is correct as a function of measured polarized amplitude and the intrinsic polarization amplitude compared to the noise.Comment: accepted for publication in the Astrophysical Journa

    Dual-Frequency Observations of 140 Compact, Flat-Spectrum Active Galactic Nuclei for Scintillation-Induced Variability

    Get PDF
    The 4.9 GHz Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey detected a drop in Interstellar Scintillation (ISS) for sources at redshifts z > 2, indicating an apparent increase in angular diameter or a decrease in flux density of the most compact components of these sources, relative to their extended emission. This can result from intrinsic source size effects or scatter broadening in the Intergalactic Medium (IGM), in excess of the expected (1+z)^0.5 angular diameter scaling of brightness temperature limited sources due to cosmological expansion. We report here 4.9 GHz and 8.4 GHz observations and data analysis for a sample of 140 compact, flat-spectrum sources which may allow us to determine the origin of this angular diameter-redshift relation by exploiting their different wavelength dependences. In addition to using ISS as a cosmological probe, the observations provide additional insight into source morphologies and the characteristics of ISS. As in the MASIV Survey, the variability of the sources is found to be significantly correlated with line-of-sight H-alpha intensities, confirming its link with ISS. For 25 sources, time delays of about 0.15 to 3 days are observed between the scintillation patterns at both frequencies, interpreted as being caused by a shift in core positions when probed at different optical depths. Significant correlation is found between ISS amplitudes and source spectral index; in particular, a large drop in ISS amplitudes is observed at spectral indices of < -0.4 confirming that steep spectrum sources scintillate less. We detect a weakened redshift dependence of ISS at 8.4 GHz over that at 4.9 GHz, with the mean variance at 4-day timescales reduced by a factor of 1.8 in the z > 2 sources relative to the z < 2 sources, as opposed to the factor of 3 decrease observed at 4.9 GHz. This suggests scatter broadening in the IGM.Comment: 30 pages, 14 figures, accepted for publication in the Astronomical Journa

    Why Do Compact Active Galactic Nuclei at High Redshift Scintillate Less?

    Get PDF
    The fraction of compact active galactic nuclei (AGNs) that exhibit interstellar scintillation (ISS) at radio wavelengths, as well as their scintillation amplitudes, have been found to decrease significantly for sources at redshifts z > 2. This can be attributed to an increase in the angular sizes of the \muas-scale cores or a decrease in the flux densities of the compact \muas cores relative to that of the mas-scale components with increasing redshift, possibly arising from (1) the space-time curvature of an expanding Universe, (2) AGN evolution, (3) source selection biases, (4) scatter broadening in the ionized intergalactic medium (IGM) and intervening galaxies, or (5) gravitational lensing. We examine the frequency scaling of this redshift dependence of ISS to determine its origin, using data from a dual-frequency survey of ISS of 128 sources at 0 < z < 4. We present a novel method of analysis which accounts for selection effects in the source sample. We determine that the redshift dependence of ISS is partially linked to the steepening of source spectral indices ({\alpha}^8.4_4.9) with redshift, caused either by selection biases or AGN evolution, coupled with weaker ISS in the {\alpha}^8.4_4.9 < -0.4 sources. Selecting only the -0.4 < {\alpha}^8.4_4.9 < 0.4 sources, we find that the redshift dependence of ISS is still significant, but is not significantly steeper than the expected (1+z)^0.5 scaling of source angular sizes due to cosmological expansion for a brightness temperature and flux-limited sample of sources. We find no significant evidence for scatter broadening in the IGM, ruling it out as the main cause of the redshift dependence of ISS. We obtain an upper limit to IGM scatter broadening of < 110\muas at 4.9 GHz with 99% confidence for all lines of sight, and as low as < 8\muas for sight-lines to the most compact, \sim 10\muas sources.Comment: 38 pages, 13 figures, accepted for publication in The Astrophysical Journa

    The Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey II: The First Four Epochs

    Get PDF
    We report on the variability of 443 flat spectrum, compact radio sources monitored using the VLA for 3 days in 4 epochs at ~ 4 month intervals at 5 GHz as part of the Micro-Arcsecond Scintillation-Induced Variability (MASIV) survey. Over half of these sources exhibited 2-10% rms variations on timescales over 2 days. We analyzed the variations by two independent methods, and find that the rms variability amplitudes of the sources correlate with the emission measure in the ionized Interstellar Medium along their respective lines of sight. We thus link the variations with interstellar scintillation of components of these sources, with some (unknown) fraction of the total flux density contained within a compact region of angular diameter in the range 10-50 micro-arcseconds. We also find that the variations decrease for high mean flux density sources and, most importantly, for high redshift sources. The decrease in variability is probably due either to an increase in the apparent diameter of the source, or a decrease in the flux density of the compact fraction beyond z ~ 2. Here we present a statistical analysis of these results, and a future paper will the discuss the cosmological implications in detail.Comment: 62 pages, 13 figures. Accepted for publication in the Astrophysical Journa
    corecore