365 research outputs found
Early-Middle Pleistocene benthic turnover and oxygen isotope stratigraphy from the Central Mediterranean (Valle di Manche, Crotone Basin, Italy): data and trends
Ostracod faunal turnover and oxygen isotope data (foraminifera) along the Valle di Manche (VdM) section are herein compiled. Specifically, the material reported in this work includes quantitative palaeoecological data and patterns of ostracod fauna framed within a high-resolution oxygen isotope stratigraphy (δ18O) from Uvigerina peregrina. In addition, the multivariate ostracod faunal stratigraphic trend (nMDS axis-1 sample score) is calibrated using bathymetric distributions of extant molluscs sampled from the same stratigraphic intervals along the VdM section. Data and analyses support the research article “Dynamics of benthic marine communities across the Early-Middle Pleistocene boundary in the Mediterranean region (Valle di Manche, Southern Italy): biotic and stratigraphic implications” Rossi et al. [1]
Increased Risk of Hepatocellular Carcinoma in Patient with Inflammatory Bowel Disease and Hemochromatosis: A Case Report
Exploring corrections to the optomechanical Hamiltonian
We compare two approaches for deriving corrections to the “linear model” of cavity optomechanics, in order to describe effects that are beyond first order in the radiation pressure coupling. In the regime where the mechanical frequency is much lower than the cavity one, we compare: (I) a widely used phenomenological Hamiltonian conserving the photon number; (II) a two-mode truncation of C. K. Law’s microscopic model, which we take as the “true” system Hamiltonian. While these approaches agree at first order, the latter model does not conserve the photon number, resulting in challenging computations. We find that approach (I) allows for several analytical predictions, and significantly outperforms the linear model in our numerical examples. Yet, we also find that the phenomenological Hamiltonian cannot fully capture all high-order corrections arising from the C. K. Law model
Verso un nuovo diritto penale sessuale
This book is centred on the proposal of a new organic criminal discipline for sexual offences in Italy. The Foreword introduces innovative concepts and 'general' breakdowns relating to sexual criminal law. Chapter 1 then addresses a critical analysis of the current discipline, pursuant to articles 609-bis and following of the Criminal Code and the related case law. Chapter 2 tables an in-depth comparative analysis of the legislation governing sexual offences in Germany, Portugal, France and England, which is also extended to legal theory and practice. Chapter 3 then presents, complete with detailed commentary, an organic project of reform for Italian legislation, characterised by a total discontinuity with the current discipline, where the principal incriminations hinge upon the mere 'sexual dissent' of the victim, breaking down different types of sexually relevant behaviour that are at present all lumped in together in the melting-pot of "sexual assault" into three different offences, while also introducing other incisive innovations
Perseverative responding and neuroanatomical alterations in adult heterozygous reeler mice are mitigated by neonatal estrogen administration
According to the "extreme-male brain" theory, elevated fetal testosterone levels may partly explain the skewed sex ratio found in Autism Spectrum Disorders (ASD). Correcting this testosterone imbalance by increasing estrogen levels may mitigate the abnormal phenotype. Accordingly, while control heterozygous reeler (rl/+) male mice - a putative model of neuroanatomical and behavioral endophenotypes in ASD - show a decreased number of Purkinje cells (PC) compared to control wild-type (+/+) littermates, neonatal estradiol administration has been shown to correct this deficit in the short-term (i.e. on postnatal day 15). Here, we further investigated the neuroanatomical and behavioral abnormalities of rl/+ male mice and the potential compensatory effects of neonatal treatment with estradiol. In a longitudinal study, we observed that: i) infant rl/+ mice showed reduced motivation for social stimuli; ii) adult rl/+ male mice showed reduced cognitive flexibility; iii) the number of amygdalar parvalbumin-positive GABAergic interneurons were remarkably reduced in rl/+ mice; iv) neonatal estradiol administration into the cisterna magna reverted the abnormal profile both at the behavioral and at the neuroanatomical level in the amygdala but did not compensate for the cerebellar abnormalities in adulthood. This study supports the view that an increased excitation-to-inhibition ratio in the cerebellum and in the amygdala during a critical window of development could be crucial to the social and cognitive phenotype of male rl/+ mice, and that acute estradiol treatment during this critical window may mitigate symptoms' severity
Revealing higher-order light and matter energy exchanges using quantum trajectories in ultrastrong coupling
The dynamics of open quantum systems is often modeled using master equations, which describe the expected outcome of an experiment (i.e., the average over many realizations of the same dynamics). Quantum trajectories, instead, model the outcome of ideal single experiments - the "clicks"of a perfect detector due to, e.g., spontaneous emission. The correct description of quantum jumps, which are related to random events characterizing a sudden change in the wave function of an open quantum system, is pivotal to the definition of quantum trajectories. In this article, we extend the formalism of quantum trajectories to open quantum systems with ultrastrong coupling (USC) between light and matter by properly defining jump operators in this regime. In such systems, exotic higher-order quantum-state and energy transfer can take place without conserving the total number of excitations in the system. The emitted field of such USC systems bears signatures of these higher-order processes, and significantly differs from similar processes at lower coupling strengths. Notably, the emission statistics must be taken at a single quantum trajectory level, since the signatures of these processes are washed out by the "averaging"of a master equation. We analyze the impact of the chosen unraveling (i.e., how one collects the output field of the system) for the quantum trajectories and show that these effects of the higher-order USC processes can be revealed in experiments by constructing histograms of detected quantum jumps. We illustrate these ideas by analyzing the excitation of two atoms by a single photon [Garziano, Phys. Rev. Lett. 117, 043601 (2016)0031-900710.1103/PhysRevLett.117.043601]. For example, quantum trajectories reveal that keeping track of the quantum jumps from the atoms allows one to reconstruct both the oscillations between one photon and two atoms as well as emerging Rabi oscillations between the two atoms
- …
