280 research outputs found

    Ground States and Flux Configurations of the Two-dimensional Falicov-Kimball Model

    Full text link
    The Falicov-Kimball model is a lattice model of itinerant spinless fermions ("electrons") interacting by an on-site potential with classical particles ("ions"). We continue the investigations of the crystalline ground states that appear for various filling of electrons and ions, for large coupling. We investigate the model for square as well as triangular lattices. New ground states are found and the effects of a magnetic flux on the structure of the phase diagram is studied. The flux phase problem where one has to find the optimal flux configurations and the nuclei configurations is also solved in some cases. Finaly we consider a model where the fermions are replaced by hard-core bosons. This model also has crystalline ground states. Therefore their existence does not require the Pauli principle, but only the on-site hard-core constraint for the itinerant particles.Comment: 42 pages, uuencoded postscript file. Missing pages adde

    Charge density wave and quantum fluctuations in a molecular crystal

    Get PDF
    We consider an electron-phonon system in two and three dimensions on square, hexagonal and cubic lattices. The model is a modification of the standard Holstein model where the optical branch is appropriately curved in order to have a reflection positive Hamiltonian. Using infrared bounds together with a recent result on the coexistence of long-range order for electron and phonon fields, we prove that, at sufficiently low temperatures and sufficiently strong electron-phonon coupling, there is a Peierls instability towards a period two charge-density wave at half-filling. Our results take into account the quantum fluctuations of the elastic field in a rigorous way and are therefore independent of any adiabatic approximation. The strong coupling and low temperature regime found here is independent of the strength of the quantum fluctuations of the elastic field.Comment: 15 pages, 1 figur

    The flux phase problem on the ring

    Full text link
    We give a simple proof to derive the optimal flux which minimizes the ground state energy in one dimensional Hubbard model, provided the number of particles is even.Comment: 8 pages, to appear in J. Phys. A: Math. Ge

    Variations on the Planar Landau Problem: Canonical Transformations, A Purely Linear Potential and the Half-Plane

    Get PDF
    The ordinary Landau problem of a charged particle in a plane subjected to a perpendicular homogeneous and static magnetic field is reconsidered from different points of view. The role of phase space canonical transformations and their relation to a choice of gauge in the solution of the problem is addressed. The Landau problem is then extended to different contexts, in particular the singular situation of a purely linear potential term being added as an interaction, for which a complete purely algebraic solution is presented. This solution is then exploited to solve this same singular Landau problem in the half-plane, with as motivation the potential relevance of such a geometry for quantum Hall measurements in the presence of an electric field or a gravitational quantum well

    The N=1 Supersymmetric Landau Problem and its Supersymmetric Landau Level Projections: the N=1 Supersymmetric Moyal-Voros Superplane

    Get PDF
    The N=1 supersymmetric invariant Landau problem is constructed and solved. By considering Landau level projections remaining non trivial under N=1 supersymmetry transformations, the algebraic structures of the N=1 supersymmetric covariant non(anti)commutative superplane analogue of the ordinary N=0 noncommutative Moyal-Voros plane are identified

    Projection on higher Landau levels and non-commutative geometry

    Get PDF
    The projection of a two dimensional planar system on the higher Landau levels of an external magnetic field is formulated in the language of the non commutative plane and leads to a new class of star products.Comment: 12 pages, latex, corrected versio

    Optimal designs for rational function regression

    Full text link
    We consider optimal non-sequential designs for a large class of (linear and nonlinear) regression models involving polynomials and rational functions with heteroscedastic noise also given by a polynomial or rational weight function. The proposed method treats D-, E-, A-, and Φp\Phi_p-optimal designs in a unified manner, and generates a polynomial whose zeros are the support points of the optimal approximate design, generalizing a number of previously known results of the same flavor. The method is based on a mathematical optimization model that can incorporate various criteria of optimality and can be solved efficiently by well established numerical optimization methods. In contrast to previous optimization-based methods proposed for similar design problems, it also has theoretical guarantee of its algorithmic efficiency; in fact, the running times of all numerical examples considered in the paper are negligible. The stability of the method is demonstrated in an example involving high degree polynomials. After discussing linear models, applications for finding locally optimal designs for nonlinear regression models involving rational functions are presented, then extensions to robust regression designs, and trigonometric regression are shown. As a corollary, an upper bound on the size of the support set of the minimally-supported optimal designs is also found. The method is of considerable practical importance, with the potential for instance to impact design software development. Further study of the optimality conditions of the main optimization model might also yield new theoretical insights.Comment: 25 pages. Previous version updated with more details in the theory and additional example

    The boundary integral method for magnetic billiards

    Full text link
    We introduce a boundary integral method for two-dimensional quantum billiards subjected to a constant magnetic field. It allows to calculate spectra and wave functions, in particular at strong fields and semiclassical values of the magnetic length. The method is presented for interior and exterior problems with general boundary conditions. We explain why the magnetic analogues of the field-free single and double layer equations exhibit an infinity of spurious solutions and how these can be eliminated at the expense of dealing with (hyper-)singular operators. The high efficiency of the method is demonstrated by numerical calculations in the extreme semiclassical regime.Comment: 28 pages, 12 figure

    Phase separation and the segregation principle in the infinite-U spinless Falicov-Kimball model

    Full text link
    The simplest statistical-mechanical model of crystalline formation (or alloy formation) that includes electronic degrees of freedom is solved exactly in the limit of large spatial dimensions and infinite interaction strength. The solutions contain both second-order phase transitions and first-order phase transitions (that involve phase-separation or segregation) which are likely to illustrate the basic physics behind the static charge-stripe ordering in cuprate systems. In addition, we find the spinodal-decomposition temperature satisfies an approximate scaling law.Comment: 19 pages and 10 figure
    corecore