55 research outputs found

    <i>In vitro</i> reconstitution defines the minimal requirements for Cdc48-dependent disassembly of the CMG helicase in budding yeast

    Get PDF
    Disassembly of the replisome is the final step of chromosome duplication in eukaryotes. In budding yeast and metazoa, cullin ubiquitin ligases are required to ubiquitylate the Cdc45-MCM-GINS (CMG) helicase that lies at the heart of the replisome, leading to a disassembly reaction that is dependent upon the ATPase known as Cdc48 or p97. Here, we describe the reconstitution of replisome disassembly, using a purified complex of the budding yeast replisome in association with the cullin ligase SCF Dia2. Upon addition of E1 and E2 enzymes, together with ubiquitin and ATP, the CMG helicase is ubiquitylated on its Mcm7 subunit. Subsequent addition of Cdc48, together with its cofactors Ufd1-Npl4, drives efficient disassembly of ubiquitylated CMG, thereby recapitulating the steps of replisome disassembly that are observed in vivo. Our findings define the minimal requirements for disassembly of the eukaryotic replisome and provide a model system for studying the disassembly of protein complexes by Cdc48-Ufd1-Npl4. </p

    Ufd1-Npl4 recruit Cdc48 for disassembly of ubiquitylated CMG helicase at the end of chromosome replication

    Get PDF
    Disassembly of the Cdc45-MCM-GINS (CMG) DNA helicase is the key regulated step during DNA replication termination in eukaryotes, involving ubiquitylation of the Mcm7 helicase subunit, leading to a disassembly process that requires the Cdc48 “segregase”. Here, we employ a screen to identify partners of budding yeast Cdc48 that are important for disassembly of ubiquitylated CMG helicase at the end of chromosome replication. We demonstrate that the ubiquitin-binding Ufd1-Npl4 complex recruits Cdc48 to ubiquitylated CMG. Ubiquitylation of CMG in yeast cell extracts is dependent upon lysine 29 of Mcm7, which is the only detectable site of ubiquitylation both in vitro and in vivo (though in vivo other sites can be modified when K29 is mutated). Mutation of K29 abrogates in vitro recruitment of Ufd1-Npl4-Cdc48 to the CMG helicase, supporting a model whereby Ufd1-Npl4 recruits Cdc48 to ubiquitylated CMG at the end of chromosome replication, thereby driving the disassembly reaction

    CUL-2<sup>LRR-1</sup> and UBXN-3 drive replisome disassembly during DNA replication termination and mitosis

    Get PDF
    Replisome disassembly is the final step of DNA replication in eukaryotes, involving the ubiquitylation and CDC48-dependent dissolution of the CMG helicase (CDC45-MCM-GINS). Using Caenorhabditis elegans early embryos and Xenopus laevis egg extracts, we show that the E3 ligase CUL-2(LRR-1) associates with the replisome and drives ubiquitylation and disassembly of CMG, together with the CDC-48 cofactors UFD-1 and NPL-4. Removal of CMG from chromatin in frog egg extracts requires CUL2 neddylation, and our data identify chromatin recruitment of CUL2(LRR1) as a key regulated step during DNA replication termination. Interestingly, however, CMG persists on chromatin until prophase in worms that lack CUL-2(LRR-1), but is then removed by a mitotic pathway that requires the CDC-48 cofactor UBXN-3, orthologous to the human tumour suppressor FAF1. Partial inactivation of lrr-1 and ubxn-3 leads to synthetic lethality, suggesting future approaches by which a deeper understanding of CMG disassembly in metazoa could be exploited therapeutically

    Chromosome Duplication in <i>Saccharomyces cerevisiae</i>

    Get PDF
    The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G 1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation. Keywords: DNA replication; cell cycle; chromatin; chromosome duplication; genome stability; YeastBookNational Institutes of Health (U.S.) (Grant GM-052339

    Discovery of Protein-Protein Interaction Inhibitors by Integrating Protein Engineering and Chemical Screening Platforms

    Get PDF
    Protein-protein interactions (PPIs) govern intracellular life, and identification of PPI inhibitors is challenging. Roadblocks in assay development stemming from weak binding affinities of natural PPIs impede progress in this field. We postulated that enhancing binding affinity of natural PPIs via protein engineering will aid assay development and hit discovery. This proof-of-principle study targets PPI between linear ubiquitin chains and NEMO UBAN domain, which activates NF-κB signaling. Using phage display, we generated ubiquitin variants that bind to the functional UBAN epitope with high affinity, act as competitive inhibitors, and structurally maintain the existing PPI interface. When utilized in assay development, variants enable generation of robust cell-based assays for chemical screening. Top compounds identified using this approach directly bind to UBAN and dampen NF-κB signaling. This study illustrates advantages of integrating protein engineering and chemical screening in hit identification, a development that we anticipate will have wide application in drug discovery

    Septins and Bacterial Infection

    Get PDF
    Septins, a unique cytoskeletal component associated with cellular membranes, are increasingly recognized as having important roles in host defense against bacterial infection. A role for septins during invasion of Listeria monocytogenes into host cells was first proposed in 2002. Since then, work has shown that septins assemble in response to a wide variety of invasive bacterial pathogens, and septin assemblies can have different roles during the bacterial infection process. Here we review the interplay between septins and bacterial pathogens, highlighting septins as a structural determinant of host defense. We also discuss how investigation of septin assembly in response to bacterial infection can yield insight into basic cellular processes including phagocytosis, autophagy, and mitochondrial dynamics

    Gasdermin B in the host–pathogen tug-of-war

    Full text link

    The Amino-Terminal TPR Domain of Dia2 Tethers SCFDia2 to the Replisome Progression Complex

    Get PDF
    SummaryEukaryotic cells contain multiple versions of the E3 ubiquitin ligase known as the SCF (Skp1/cullin/F box), each of which is distinguished by a different F box protein that uses a domain at the carboxyl terminus to recognize substrates [1, 2]. The F box protein Dia2 is an important determinant of genome stability in budding yeast [3–5], but its mode of action is poorly understood. Here we show that SCFDia2 associates with the replisome progression complex (RPC) that assembles around the MCM2-7 helicase at DNA replication forks [6]. This interaction requires the RPC components Mrc1 and Ctf4, both of which associate with a tetratricopeptide repeat (TPR) domain located at the amino terminus of Dia2. Our data indicate that the TPR domain of Dia2 tethers SCFDia2 to the RPC, probably increasing the local concentration of the ligase at DNA replication forks. This regulation becomes important in cells that accumulate stalled DNA replication forks at protein-DNA barriers, perhaps aiding the interaction of SCFDia2 with key substrates. Our findings suggest that the amino-terminal domains of other F box proteins might also play an analogous regulatory role, controlling the localization of the cognate SCF complexes
    corecore