257 research outputs found

    Checkpoint recovery in cells: how a molecular understanding can help in the fight against cancer

    Get PDF
    Dysregulation of the cell cycle is the underlying mechanism of neoplasia. Healthy cells prevent propagation of DNA mutations to progeny by activation of cellular checkpoints, which allows time for DNA repair. On the other hand, activation of the DNA damage response is also the general principle of many current cancer treatments. Thus, recent advances in understanding how checkpoints in the cell cycle work at the molecular level open the door to new approaches to antitumor therapy

    Distinct phosphatases antagonize the p53 response in different phases of the cell cycle

    Get PDF
    The basic machinery that detects DNA damage is the same throughout the cell cycle. Here, we show, in contrast, that reversal of DNA damage responses (DDRs) and recovery are fundamentally different in G1 and G2 phases of the cell cycle. We find that distinct phosphatases are required to counteract the checkpoint response in G1 vs. G2. Whereas WT p53-induced phosphatase 1 (Wip1) promotes recovery in G2-arrested cells by antagonizing p53, it is dispensable for recovery from a G1 arrest. Instead, we identify phosphoprotein phosphatase 4 catalytic subunit (PP4) to be specifically required for cell cycle restart after DNA damage in G1. PP4 dephosphorylates Krüppel-associated box domain-associated protein 1-S473 to repress p53-dependent transcriptional activation of p21 when the DDR is silenced. Taken together, our results show that PP4 and Wip1 are differentially required to counteract the p53-dependent cell cycle arrest in G1 and G2, by antagonizing early or late p53-mediated responses, respectively

    The responses of cancer cells to PLK1 inhibitors reveal a novel protective role for p53 in maintaining centrosome separation

    Get PDF
    Polo-like kinase-1 (PLK1) plays a major role in driving mitotic events, including centrosome disjunction and separation, and is frequently over-expressed in human cancers. PLK1 inhibition is a promising therapeutic strategy and works by arresting cells in mitosis due to monopolar spindles. The p53 tumour suppressor protein is a short-lived transcription factor that can inhibit the growth, or stimulate the death, of developing cancer cells. Curiously, although p53 normally acts in an anti-cancer capacity, it can offer significant protection against inhibitors of PLK1, but the events underpinning this effect are not known. Here, we show that functional p53 reduces the sensitivity to PLK1 inhibitors by permitting centrosome separation to occur, allowing cells to traverse mitosis and re-enter cycle with a normal complement of 2N chromosomes. Protection entails the activation of p53 through the DNA damage-response enzymes, ATM and ATR, and requires the phosphorylation of p53 at the key regulatory site, Ser15. These data highlight a previously unrecognised link between p53, PLK1 and centrosome separation that has therapeutic implications for the use of PLK1 inhibitors in the clinic

    PPM1D activity promotes the replication stress caused by cyclin E1 overexpression

    Get PDF
    Oncogene-induced replication stress has been recognized as a major cause of genome instability in cancer cells. Increased expression of cyclin E1 caused by amplification of the CCNE1 gene is a common cause of replication stress in various cancers. Protein phosphatase magnesium-dependent 1 delta (PPM1D) is a negative regulator of p53 and has been implicated in termination of the cell cycle checkpoint. Amplification of the PPM1D gene or frameshift mutations in its final exon promote tumorigenesis. Here, we show that PPM1D activity further increases the replication stress caused by overexpression of cyclin E1. In particular, we demonstrate that cells expressing a truncated mutant of PPM1D progress faster from G1 to S phase and fail to complete licensing of the replication origins. In addition, we show that transcription-replication collisions and replication fork slowing caused by CCNE1 overexpression are exaggerated in cells expressing the truncated PPM1D. Finally, replication speed as well as accumulation of focal DNA copy number alterations caused by induction of CCNE1 expression was rescued by pharmacological inhibition of PPM1D. We propose that increased activity of PPM1D suppresses the checkpoint function of p53 and thus promotes genome instability in cells expressing the CCNE1 oncogene.</p

    PPM1D activity promotes the replication stress caused by cyclin E1 overexpression

    Full text link
    Oncogene-induced replication stress has been recognized as a major cause of genome instability in cancer cells. Increased expression of cyclin E1 caused by amplification of the CCNE1 gene is a common cause of replication stress in various cancers. Protein phosphatase magnesium-dependent 1 delta (PPM1D) is a negative regulator of p53 and has been implicated in termination of the cell cycle checkpoint. Amplification of the PPM1D gene or frameshift mutations in its final exon promote tumorigenesis. Here, we show that PPM1D activity further increases the replication stress caused by overexpression of cyclin E1. In particular, we demonstrate that cells expressing a truncated mutant of PPM1D progress faster from G1 to S phase and fail to complete licensing of the replication origins. In addition, we show that transcription-replication collisions and replication fork slowing caused by CCNE1 overexpression are exaggerated in cells expressing the truncated PPM1D. Finally, replication speed as well as accumulation of focal DNA copy number alterations caused by induction of CCNE1 expression was rescued by pharmacological inhibition of PPM1D. We propose that increased activity of PPM1D suppresses the checkpoint function of p53 and thus promotes genome instability in cells expressing the CCNE1 oncogene

    Species-Specific Interactions of Src Family Tyrosine Kinases Regulate Chlamydia Intracellular Growth and Trafficking

    Get PDF
    Src family kinases (SFKs) regulate key cellular processes and are emerging as important targets for intracellular pathogens. In this commentary, we briefly review the role of SFKs in bacterial pathogenesis and highlight new work on the role of SFKs during the intracellular cycle of Chlamydia species

    Phosphorylation of AIB1 at Mitosis Is Regulated by CDK1/CYCLIN B

    Get PDF
    Although the AIB1 oncogene has an important role during the early phase of the cell cycle as a coactivator of E2F1, little is known about its function during mitosis.Mitotic cells isolated by nocodazole treatment as well as by shake-off revealed a post-translational modification occurring in AIB1 specifically during mitosis. This modification was sensitive to the treatment with phosphatase, suggesting its modification by phosphorylation. Using specific inhibitors and in vitro kinase assays we demonstrate that AIB1 is phosphorylated on Ser728 and Ser867 by Cdk1/cyclin B at the onset of mitosis and remains phosphorylated until exit from M phase. Differences in the sensitivity to phosphatase inhibitors suggest that PP1 mediates dephosphorylation of AIB1 at the end of mitosis. The phosphorylation of AIB1 during mitosis was not associated with ubiquitylation or degradation, as confirmed by western blotting and flow cytometry analysis. In addition, luciferase reporter assays showed that this phosphorylation did not alter the transcriptional properties of AIB1. Importantly, fluorescence microscopy and sub-cellular fractionation showed that AIB1 phosphorylation correlated with the exclusion from the condensed chromatin, thus preventing access to the promoters of AIB1-dependent genes. Phospho-specific antibodies developed against Ser728 further demonstrated the presence of phosphorylated AIB1 only in mitotic cells where it was localized preferentially in the periphery of the cell.Collectively, our results describe a new mechanism for the regulation of AIB1 during mitosis, whereby phosphorylation of AIB1 by Cdk1 correlates with the subcellular redistribution of AIB1 from a chromatin-associated state in interphase to a more peripheral localization during mitosis. At the exit of mitosis, AIB1 is dephosphorylated, presumably by PP1. This exclusion from chromatin during mitosis may represent a mechanism for governing the transcriptional activity of AIB1

    Diverse Requirements for Src-Family Tyrosine Kinases Distinguish Chlamydial Species

    Get PDF
    Chlamydiae are well known for their species specificity and tissue tropism, and yet the individual species and strains show remarkable genomic synteny and share an intracellular developmental cycle unique in the microbial world. Only a relatively few chlamydial genes have been linked to specific disease or tissue tropism. Here we show that chlamydial species associated with human infections, Chlamydia trachomatis and C. pneumoniae, exhibit unique requirements for Src-family kinases throughout their developmental cycle. Utilization of Src-family kinases by C. trachomatis includes tyrosine phosphorylation of the secreted effector Tarp during the entry process, a functional role in microtubule-dependent trafficking to the microtubule organizing center, and a requirement for Src-family kinases for successful initiation of development. Nonhuman chlamydial species C. caviae and C. muridarum show none of these requirements and, instead, appear to be growth restricted by the activities of Src-family kinases. Depletion of Src-family kinases triggers a more rapid development of C. caviae with up to an 800% increase in infectious progeny production. Collectively, the results suggest that human chlamydial species have evolved requirements for tyrosine phosphorylation by Src-family kinases that are not seen in other chlamydial species. The requirement for Src-family kinases thus represents a fundamental distinction between chlamydial species that would not be readily apparent in genomic comparisons and may provide insights into chlamydial disease association and species specificity
    corecore