313 research outputs found
Constructing Robust Channel Structures by Packing Metallacalixarenes: Reversible Single-Crystal-to-Single-Crystal Dehydration
The self-assembly process involving the dianion of trimesic acid (Htrim2−) and {Cu(tmen)}2+ templating cations (tmen = N,N,N′,N′-tetramethylethylenediamine) affords a new metallacalixarene, [Cu4(tmen)4(Htrim)4]·nH2O. The packing of the cyclic molecules in the crystal generates channels that are filled by water molecules. The dehydration−rehydration process of the crystals was found to be reversible
New heterometallic coordination polymers constructed from 3d–3d′ binuclear nodes
Heterobinuclear [CuIIMnII] and [CuIICoII] cationic complexes can efficiently act as nodes for designing coordination polymers. The crystal structures of two binuclear precursors, [LCuCo(NO3)2] (1) and [LCuMn(NO3)2] (2), have been solved (L2− is the dianion of the Schiff base resulting from the 2 : 1 condensation of 3-methoxysalicyladehyde with 1,3-propanediamine). The nitrato ligands, coordinated to CoII and, respectively, the MnII ions from the precursors, are easily replaced by exo-dentate ligands, resulting in 1-D coordination polymers: 1∞[L(H2O)CuCo(oxy-bbz)]·CH3CN·C2H5OH (3), 1∞[L(H2O)CuCo(2,5-dhtp)]·CH3CN (5) and ∞[L(H2O)CuMn(ox)]·3H2O (6) (oxy-bbz2− = the dianion of 4,4′-oxy-bis(benzoic) acid; 2,5-dhtp2− = the dianion of 2,5-dihydroxy-terephthalic acid; ox2− = the dianion of the oxalic acid). In the case of the [CuMn] node, the interaction with oxy-bbz2− affords a binuclear complex, [LCuMn(oxy-bbz)(H2O)2] (4)
Conducting mixed-valence salt of bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) with the paramagnetic heteroleptic anion [CrIII(oxalate)2(2,2′-bipyridine)](-)
The synthesis and crystal structure of the first tetrathiafulvalene (TTF) based radical cation salt containing the heteroleptic paramagnetic anion [CrIII(2,2′-bipy)(C2O4)2]− are reported. In the salt formulated as α′-(BEDT-TTF)2[Cr(C2O4)2(2,2′-bipy)]·CHCl2CH2Cl according to the single-crystal X-ray structure, the BEDT-TTF (bis(ethylenedithio)tetrathiafulvalene) donors are in a mixed valence state and form two types of uniform chains within organic layers. Two overlap modes are observed in these chains, which are canted with respect to the stacking direction, leading to a peculiar α′ packing mode. The anions organize in supramolecular chains sustained by π–π interactions between the bipyridine units. The magnetic behavior of the compound follows a Curie–Weiss law, with a magnetic contribution arising from both cationic and anionic counterparts. Single-crystal electrical transport measurements are in agreement with a semiconductor behavior and have been correlated with extended Hückel tight-binding calculations
Stereoisomeric semiconducting radical cation salts of chiral bis(2-hydroxypropylthio)ethylenedithioTTF with tetrafluoroborate anions
The new chiral TTF-based donor molecule bis(2-hydroxypropylthio)ethylenedithiotetrathiafulvalene has produced enantiopure R,R and S,S radical cation salts with the tetrafluoroborate anion as well as the nearly isostructural meso/racemate mixture. The enantiopure R,R or S,S salts are both 1:1 semiconducting salts with activation energies of 0.19–0.24 eV, both crystallising in the orthorhombic space group C2221. The semiconducting salt containing both meso and racemic donor cations has a very similar crystal structure but crystallising in the monoclinic space group C2/c (β = 91.39°) with similar S⋯S interactions but a smaller activation energy of 0.15–0.17 eV. This is in contrast to previous families of this type where the disordered racemate has a larger activation energy than its enantiopure salts
A missing high-spin molecule in the family of cyano-bridged heptanuclear heterometal complexes, [(LCuII)6FeIII(CN)6]3+, and its CoIII and CrIII analogues, accompanied in the crystal by a novel octameric water cluster
Three isostructural cyano-bridged heptanuclear complexes,
[{CuII(saldmen)(H2O)}6{MIII(CN)6}](ClO4)38H2O (M = FeIII 2; CoIII, 3;
CrIII 4), have been obtained by reacting the binuclear copper(II) complex,
[Cu2(saldmen)2(mu-H2O)(H2O)2](ClO4)22H2O 1, with K3[Co(CN)6],
K4[Fe(CN)6], and, respectively, K3[Cr(CN)6] (Hsaldmen is the Schiff base
resulted from the condensation of salicylaldehyde with
N,N-dimethylethylenediamine). A unique octameric water cluster, with
bicyclo[2,2,2]octane-like structure, is sandwiched between the heptanuclear
cations in 2, 3 and 4. The cryomagnetic investigations of compounds 2 and 4
reveal ferromagnetic couplings of the central FeIII or CrIII ions with the CuII
ions (JCuFe = +0.87 cm-1, JCuCr = +30.4 cm-1). The intramolecular Cu-Cu
exchange interaction in 3, across the diamagnetic cobalt(III) ion, is -0.3
cm-1. The solid-state1H-NMR spectra of compounds 2 and 3 have been
investigated
Chirality in charge-transfer salts of BEDT-TTF of tris(oxalato)chromate(III)
Crystallisation from chiral electrolyte (R)-(−)-carvone has produced three new chiral semiconducting salts of BEDT-TTF from racemic anion tri(oxalato)chromate(III)
Contrasting crystal packing arrangements in triiodide salts of radical cations of chiral bis(pyrrolo[3,4-d])tetrathiafulvalenes
Crystal structures of six 1 : 1 triiodide salts of a series of enantiopure bis(pyrrolo[3,4-d])TTF derivatives, the first structures of radical cation salts reported for this bis(pyrrolo) donor system, show three different arrangements of triiodide ions, organised either in head-to-tail pairs, in infinite lines, or in a castellated arrangement. The complex crystal structures, obtained by electrocrystallisation, are influenced by the presence of solvent, for example changing an ABCABC packing arrangement to ABAB with inclusion of THF, as well as by the size of the chiral side chain
Hydrogen bonded anion ribbons, networks and clusters and sulfur–anion interactions in novel radical cation salts of BEDT-TTF with sulfamate, pentaborate and bromide
Slow Relaxation of Magnetization in an Isostructural Series of Zinc–Lanthanide Complexes: An Integrated EPR and AC Susceptibility Study
We report the synthesis, structure, and spectroscopic and dynamic magnetic properties of a series of heterodinuclear complexes, [ZnLn(LH4 )2 ](NO3 )3 ⋅6 H2 O (Ln=Nd, Tb, Dy, Ho, Er, and Yb), with the singly deprotonated form of a new compartmentalized Schiff-base ligand, LH5 . The Ln(III) ions in these systems show a distorted square-antiprism geometry with an LnO8 coordination sphere. EPR spectroscopy and DC magnetic studies have shown that the anisotropic nature of the complexes is far more complicated than predicted on the basis of a simple electrostatic model. Among the investigated systems, only the Dy(III) derivative showed single-ion magnet behavior, in zero and an applied magnetic field, both in pure polycrystalline samples and in a series of polycrystalline samples with different degrees of dilution at the single-crystal level in the isostructural Y(III) derivative. The rich dynamics observed as functions of frequency, field, and temperature reveals that multiple relaxation mechanisms are at play, resulting in a barrier of 189 cm(-1) , which is among the highest reported for a dinuclear Zn-Dy system. Analysis of the dynamic behavior as a function of dilution degree further evidenced the persistence of non-negligible intermolecular interactions, even at the lowest concentration of 1 %
- …
