587 research outputs found
Position choice and swimming costs of juvenile Atlantic salmon salmo salar in turbulent flow
Swimming costs (SCs) for fish have been shown to be affected by turbulence. However, this idea has not yet been implemented in habitat models, which often represent hydraulics using water velocity averaged over time and space. In this study, we analysed the habitat selection of individual juvenile Atlantic salmon Salmo salar (L. 1758) in relation to predicted SC in the turbulent flow of a large outdoor flume. We used a previously published SC model parameterized using mean velocity, turbulence intensity, water temperature and fish mass. Results showed that 86% of fish chose locations with significantly lower predicted SC than expected at random. Position choice was negatively related to predicted SC, mean velocity, spatial velocity gradient, and Reynolds stresses. Based on the findings, a novel habitat suitability curve is recommended for juvenile Atlantic salmon. The results are expected to contribute towards the improvement of bioenergetics modelling to increase our understanding of the impacts of environmental changes and management activitie
Universal architecture of bacterial chemoreceptor arrays
Chemoreceptors are key components of the high-performance signal transduction system that controls bacterial chemotaxis. Chemoreceptors are typically localized in a cluster at the cell pole, where interactions among the receptors in the cluster are thought to contribute to the high sensitivity, wide dynamic range, and precise adaptation of the signaling system. Previous structural and genomic studies have produced conflicting models, however, for the arrangement of the chemoreceptors in the clusters. Using whole-cell electron cryo-tomography, here we show that chemoreceptors of different classes and in many different species representing several major bacterial phyla are all arranged into a highly conserved, 12-nm hexagonal array consistent with the proposed “trimer of dimers” organization. The various observed lengths of the receptors confirm current models for the methylation, flexible bundle, signaling, and linker sub-domains in vivo. Our results suggest that the basic mechanism and function of receptor clustering is universal among bacterial species and was thus conserved during evolution
Effects of thermal fluctuation and the receptor-receptor interaction in bacterial chemotactic signalling and adaptation
Bacterial chemotaxis is controlled by the conformational changes of the
receptors, in response to the change of the ambient chemical concentration. In
a statistical mechanical approach, the signalling due to the conformational
changes is a thermodynamic average quantity, dependent on the temperature and
the total energy of the system, including both ligand-receptor interaction and
receptor-receptor interaction. This physical theory suggests to biology a new
understanding of cooperation in ligand binding and receptor signalling
problems. How much experimental support of this approach can be obtained from
the currently available data? What are the parameter values? What is the
practical information for experiments? Here we make comparisons between the
theory and recent experimental results. Although currently comparisons can only
be semi-quantitative or qualitative, consistency is clearly shown. The theory
also helps to sort a variety of data.Comment: 26 pages, revtex. Journal version. Analysis on another set of data on
adaptation time is adde
The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology
Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury
Do legacy effects of deposited fine sediment influence the ecological response of drifting invertebrates to a fine sediment pulse?
The deposition of excess fine sediment and clogging of benthic substrates is recognised as a global threat to ecosystem functioning and community dynamics. Legacy effects of previous sedimentation create a habitat template on which subsequent ecological responses occur, and therefore, may have a long-lasting influence on community structure. Our experimental study examined the effects of streambed colmation (representing a legacy effect of fine sediment deposition) and a suspended fine sediment pulse on macroinvertebrate drift and community dynamics. We used 12 outdoor stream mesocosms that were split into two sections of 6.2 m in length (24 mesocosm sections in total). Each mesocosm section contained a coarse bed substrate with clear bed interstices or a fine bed substrate representing a colmated streambed. After 69 days, a fine sediment pulse with three differing fine sediment treatments was applied to the stream mesocosms. Added fine sediment influenced macroinvertebrate movements by lowering benthic density and taxonomic richness and increasing drift density, taxonomic richness, and altering drift assemblages. Our study found the highest dose of sediment addition (an estimated suspended sediment concentration of 1112 mg l caused significant differences in benthic and drift community metrics and drift assemblages compared with the control treatment (30 l of water, no added sediment). Our results indicate a rapid response in drifting macroinvertebrates after stressor application, where ecological impairment varies with the concentration of suspended sediment. Contrary to expectations, bed substrate characteristics had no effect on macroinvertebrate behavioural responses to the fine sediment pulse
Dynamic metabolic patterns tracking neurodegeneration and gliosis following 26S proteasome dysfunction in mouse forebrain neurons
Metabolite profling is an important tool that may better capture the multiple features of neurodegeneration. With the considerable parallels between mouse and human metabolism, the use of metabolomics in mouse models with neurodegenerative pathology provides mechanistic insight and ready translation into aspects of human disease. Using 400MHz nuclear magnetic resonance spectroscopy we have carried out a temporal region-specifc investigation of the metabolome of neuron-specifc 26S proteasome knockout mice characterised by progressive neurodegeneration and Lewy-like inclusion formation in the forebrain. An early signifcant decrease in N-acetyl aspartate revealed evidence of neuronal dysfunction before cell death that may be associated with changes in brain neuroenergetics, underpinning the use of this metabolite to track neuronal health. Importantly, we show early and extensive activation of astrocytes and microglia in response to targeted neuronal dysfunction in this context, but only late changes in myo-inositol; the best established glial cell marker in magnetic resonance spectroscopy studies, supporting recent evidence that additional early neuroinfammatory markers are needed. Our results extend the limited understanding of metabolite changes associated with gliosis and provide evidence that changes in glutamate homeostasis and lactate may correlate with astrocyte activation and have biomarker potential for tracking neuroinfammation
On Predicting Mössbauer Parameters of Iron-Containing Molecules with Density-Functional Theory
The performance of six frequently used density functional theory (DFT) methods (RPBE, OLYP, TPSS, B3LYP, B3LYP*, and TPSSh) in the prediction of Mössbauer isomer shifts(δ) and quadrupole splittings (ΔEQ) is studied for an extended and diverse set of Fe complexes. In addition to the influence of the applied density functional and the type of the basis set, the effect of the environment of the molecule, approximated with the conducting-like screening solvation model (COSMO) on the computed Mössbauer parameters, is also investigated. For the isomer shifts the COSMO-B3LYP method is found to provide accurate δ values for all 66 investigated complexes, with a mean absolute error (MAE) of 0.05 mm s–1 and a maximum deviation of 0.12 mm s–1. Obtaining accurate ΔEQ values presents a bigger challenge; however, with the selection of an appropriate DFT method, a reasonable agreement can be achieved between experiment and theory. Identifying the various chemical classes of compounds that need different treatment allowed us to construct a recipe for ΔEQ calculations; the application of this approach yields a MAE of 0.12 mm s–1 (7% error) and a maximum deviation of 0.55 mm s–1 (17% error). This accuracy should be sufficient for most chemical problems that concern Fe complexes. Furthermore, the reliability of the DFT approach is verified by extending the investigation to chemically relevant case studies which include geometric isomerism, phase transitions induced by variations of the electronic structure (e.g., spin crossover and inversion of the orbital ground state), and the description of electronically degenerate triplet and quintet states. Finally, the immense and often unexploited potential of utilizing the sign of the ΔEQ in characterizing distortions or in identifying the appropriate electronic state at the assignment of the spectral lines is also shown
Endoscopists attitudes on the publication of "quality" data for endoscopic procedures: a cross-sectional survey
<p>Abstract</p> <p>Background</p> <p>Whilst the public now have access to mortality & morbidity data for cardiothoracic surgeons, such "quality" data for endoscopy are not generally available. We studied endoscopists' attitudes to and the practicality of this data being published.</p> <p>Methods</p> <p>We sent a questionnaire to all consultant gastrointestinal (GI) surgeons, physicians and medical GI specialist registrars in the Northern region who currently perform GI endoscopic procedures (n = 132). We recorded endoscopist demographics, experience and current data collection practice. We also assessed the acceptability and utility of nine items describing endoscopic "quality" (e.g. mortality, complication & completion rates).</p> <p>Results</p> <p>103 (78%) doctors responded of whom 79 were consultants (77%). 61 (59%) respondents were physicians. 77 (75%) collect any "quality" data. The most frequently collected item was colonoscopic completion rate. Data were most commonly collected for appraisal, audit or clinical governance. The majority of doctors (54%) kept these data only available to themselves, and just one allowed the public to access this. The most acceptable data item was annual number of endoscopies and the least was crude upper GI bleeding mortality. Surgeons rated information less acceptable and less useful than physicians. Acceptability and utility scores were not related to gender, length of experience or current activity levels. Only two respondents thought all items totally unacceptable and useless.</p> <p>Conclusion</p> <p>The majority of endoscopists currently collect "quality" data for their practice although these are not widely available. The endoscopists in this study consider the publication of their outcome data to be "fairly unacceptable/not very useful" to "neutral" (score 2–3). If these data were made available to patients, consideration must be given to both its value and its acceptability.</p
Environmental impact of omnivorous, ovo-lacto-vegetarian, and vegan diet
Food and beverage consumption has a great impact on the environment, although there is a lack of information concerning the whole diet. The environmental impact of 153 Italian adults (51 omnivores, 51 ovo-lacto-vegetarians, 51 vegans) and the inter-individual variability within dietary groups were assessed in a real-life context. Food intake was monitored with a 7-d dietary record to calculate nutritional values and environmental impacts (carbon, water, and ecological footprints). The Italian Mediterranean Index was used to evaluate the nutritional quality of each diet. The omnivorous choice generated worse carbon, water and ecological footprints than other diets. No differences were found for the environmental impacts of ovo-lacto-vegetarians and vegans, which also had diets more adherent to the Mediterranean pattern. A high inter-individual variability was observed through principal component analysis, showing that some vegetarians and vegans have higher environmental impacts than those of some omnivores. Thus, regardless of the environmental benefits of plant-based diets, there is a need for thinking in terms of individual dietary habits. To our knowledge, this is the first time environmental impacts of three dietary regimens are evaluated using individual recorded dietary intakes rather than hypothetical diet or diets averaged over a population
- …
