81 research outputs found
Recommended from our members
The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals
Although ultraviolet (UV) sensitivity is widespread among animals it is considered rare in mammals, being restricted to the few species that have a visual pigment maximally sensitive (λmax) below 400 nm. However, even animals without such a pigment will be UV-sensitive if they have ocular media that transmit these wavelengths, as all visual pigments absorb significant amounts of UV if the energy level is sufficient. Although it is known that lenses of diurnal sciurid rodents, tree shrews and primates prevent UV from reaching the retina, the degree of UV transmission by ocular media of most other mammals without a visual pigment with λmax in the UV is unknown. We examined lenses of 38 mammalian species from 25 families in nine orders and observed large diversity in the degree of short-wavelength transmission. All species whose lenses removed short wavelengths had retinae specialized for high spatial resolution and relatively high cone numbers, suggesting that UV removal is primarily linked to increased acuity. Other mammals, however, such as hedgehogs, dogs, cats, ferrets and okapis had lenses transmitting significant amounts of UVA (315–400 nm), suggesting that they will be UV-sensitive even without a specific UV visual pigment
The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology
Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury
Health-Promoting and Health-Risk Behaviors: Theory-Driven Analyses of Multiple Health Behavior Change in Three International Samples
Background: Co-occurrence of different behaviors was investigated using the theoretical underpinnings of the Transtheoretical Model, the Theory of Triadic Influence and the concept of Transfer.
Purpose: To investigate relationships between different health behaviors' stages of change, how behaviors group, and whether study participants cluster in terms of their behaviors.
Method: Relationships across stages for different behaviors were assessed in three studies with N = 3,519, 965, and 310 individuals from the USA and Germany by telephone and internet surveys using correlational analyses, factor analyses, and cluster analyses.
Results: Consistently stronger correlations were found between nutrition and physical activity (r = 0.16-0.26, p < 0.01) than between non-smoking and nutrition (r = 0.08-0.16, p < 0.03), or non-smoking and physical activity (r = 0.01-0.21). Principal component analyses of investigated behaviors indicated two factors: a "health-promoting" factor and a "health-risk" factor. Three distinct behavioral patterns were found in the cluster analyses.
Conclusion: Our results support the assumption that individuals who are in a higher stage for one behavior are more likely to be in a higher stage for another behavior as well. If the aim is to improve a healthy lifestyle, success in one behavior can be used to facilitate changes in other behaviors--especially if the two behaviors are both health-promoting or health-risky. Moreover, interventions should be targeted towards the different behavioral patterns rather than to single behaviors. This might be achieved by addressing transfer between behaviors
Involvement of the Intrinsic/Default System in Movement-Related Self Recognition
The question of how people recognize themselves and separate themselves from the environment and others has long intrigued philosophers and scientists. Recent findings have linked regions of the ‘default brain’ or ‘intrinsic system’ to self-related processing. We used a paradigm in which subjects had to rely on subtle sensory-motor synchronization differences to determine whether a viewed movement belonged to them or to another person, while stimuli and task demands associated with the “responded self” and “responded other” conditions were precisely matched. Self recognition was associated with enhanced brain activity in several ROIs of the intrinsic system, whereas no differences emerged within the extrinsic system. This self-related effect was found even in cases where the sensory-motor aspects were precisely matched. Control conditions ruled out task difficulty as the source of the differential self-related effects. The findings shed light on the neural systems underlying bodily self recognition
Visual Personal Familiarity in Amnestic Mild Cognitive Impairment
BACKGROUND: Patients with amnestic mild cognitive impairment are at high risk for developing Alzheimer's disease. Besides episodic memory dysfunction they show deficits in accessing contextual knowledge that further specifies a general concept or helps to identify an object or a person. METHODOLOGY/PRINCIPAL FINDINGS: Using functional magnetic resonance imaging, we investigated the neural networks associated with the perception of personal familiar faces and places in patients with amnestic mild cognitive impairment and healthy control subjects. Irrespective of stimulus type, patients compared to control subjects showed lower activity in right prefrontal brain regions when perceiving personally familiar versus unfamiliar faces and places. Both groups did not show different neural activity when perceiving faces or places irrespective of familiarity. CONCLUSIONS/SIGNIFICANCE: Our data highlight changes in a frontal cortical network associated with knowledge-based personal familiarity among patients with amnestic mild cognitive impairment. These changes could contribute to deficits in social cognition and may reduce the patients' ability to transition from basic to complex situations and tasks
Global Phylogeography with Mixed-Marker Analysis Reveals Male-Mediated Dispersal in the Endangered Scalloped Hammerhead Shark (Sphyrna lewini)
Background: The scalloped hammerhead shark, Sphyrna lewini, is a large endangered predator with a circumglobal distribution, observed in the open ocean but linked ontogenetically to coastal embayments for parturition and juvenile development. A previous survey of maternal (mtDNA) markers demonstrated strong genetic partitioning overall (global W ST = 0.749) and significant population separations across oceans and between discontinuous continental coastlines. Methodology/Principal Findings: We surveyed the same global range with increased sample coverage (N = 403) and 13 microsatellite loci to assess the male contribution to dispersal and population structure. Biparentally inherited microsatellites reveal low or absent genetic structure across ocean basins and global genetic differentiation (FST = 0.035) over an order of magnitude lower than the corresponding measures for maternal mtDNA lineages (W ST = 0.749). Nuclear allelic richness and heterozygosity are high throughout the Indo-Pacific, while genetic structure is low. In contrast, allelic diversity is low while population structure is higher for populations at the ends of the range in the West Atlantic and East Pacific. Conclusions/Significance: These data are consistent with the proposed Indo-Pacific center of origin for S. lewini, and indicate that females are philopatric or adhere to coastal habitats while males facilitate gene flow across oceanic expanses. This study includes the largest sampling effort and the most molecular loci ever used to survey the complete range of
Mourning and melancholia revisited: correspondences between principles of Freudian metapsychology and empirical findings in neuropsychiatry
Freud began his career as a neurologist studying the anatomy and physiology of the nervous system, but it was his later work in psychology that would secure his place in history. This paper draws attention to consistencies between physiological processes identified by modern clinical research and psychological processes described by Freud, with a special emphasis on his famous paper on depression entitled 'Mourning and melancholia'. Inspired by neuroimaging findings in depression and deep brain stimulation for treatment resistant depression, some preliminary physiological correlates are proposed for a number of key psychoanalytic processes. Specifically, activation of the subgenual cingulate is discussed in relation to repression and the default mode network is discussed in relation to the ego. If these correlates are found to be reliable, this may have implications for the manner in which psychoanalysis is viewed by the wider psychological and psychiatric communities
Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade
Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A1 receptors (A1Rs) and the less abundant, but widespread, facilitatory A2ARs. It is commonly assumed that A1Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A1R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A1Rs in chronic noxious situations. In contrast, A2ARs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A2AR antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A2AR antagonists as novel protective agents in neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, ischemic brain damage and epilepsy. The greater interest of A2AR blockade compared to A1R activation does not mean that A1R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A2AR antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A1Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different
- …
