1,344 research outputs found
Versatile directional searches for gravitational waves with Pulsar Timing Arrays
By regularly monitoring the most stable millisecond pulsars over many years, pulsar timing arrays (PTAs) are positioned to detect and study correlations in the timing behaviour of those pulsars. Gravitational waves (GWs) from supermassive black hole binaries (SMBHBs) are an exciting potentially detectable source of such correlations. We describe a straightforward technique by which a PTA can be ‘phased-up’ to form time series of the two polarization modes of GWs coming from a particular direction of the sky. Our technique requires no assumptions regarding the time-domain behaviour of a GW signal. This method has already been used to place stringent bounds on GWs from individual SMBHBs in circular orbits. Here, we describe the methodology and demonstrate the versatility of the technique in searches for a wide variety of GW signals including bursts with unmodelled waveforms. Using the first six years of data from the Parkes Pulsar Timing Array, we conduct an all-sky search for a detectable excess of GW power from any direction. For the lines of sight to several nearby massive galaxy clusters, we carry out a more detailed search for GW bursts with memory, which are distinct signatures of SMBHB mergers. In all cases, we find that the data are consistent with noise
Recommended from our members
Multifaceted Changes in Synaptic Composition and Astrocytic Involvement in a Mouse Model of Fragile X Syndrome.
Fragile X Syndrome (FXS), a common inheritable form of intellectual disability, is known to alter neocortical circuits. However, its impact on the diverse synapse types comprising these circuits, or on the involvement of astrocytes, is not well known. We used immunofluorescent array tomography to quantify different synaptic populations and their association with astrocytes in layers 1 through 4 of the adult somatosensory cortex of a FXS mouse model, the FMR1 knockout mouse. The collected multi-channel data contained approximately 1.6 million synapses which were analyzed using a probabilistic synapse detector. Our study reveals complex, synapse-type and layer specific changes in the neocortical circuitry of FMR1 knockout mice. We report an increase of small glutamatergic VGluT1 synapses in layer 4 accompanied by a decrease in large VGluT1 synapses in layers 1 and 4. VGluT2 synapses show a rather consistent decrease in density in layers 1 and 2/3. In all layers, we observe the loss of large inhibitory synapses. Lastly, astrocytic association of excitatory synapses decreases. The ability to dissect the circuit deficits by synapse type and astrocytic involvement will be crucial for understanding how these changes affect circuit function, and ultimately defining targets for therapeutic intervention
Recommended from our members
Distinctive Structural and Molecular Features of Myelinated Inhibitory Axons in Human Neocortex.
Numerous types of inhibitory neurons sculpt the performance of human neocortical circuits, with each type exhibiting a constellation of subcellular phenotypic features in support of its specialized functions. Axonal myelination has been absent among the characteristics used to distinguish inhibitory neuron types; in fact, very little is known about myelinated inhibitory axons in human neocortex. Here, using array tomography to analyze samples of neurosurgically excised human neocortex, we show that inhibitory myelinated axons originate predominantly from parvalbumin-containing interneurons. Compared to myelinated excitatory axons, they have higher neurofilament and lower microtubule content, shorter nodes of Ranvier, and more myelin basic protein (MBP) in their myelin sheath. Furthermore, these inhibitory axons have more mitochondria, likely to sustain the high energy demands of parvalbumin interneurons, as well as more 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP), a protein enriched in the myelin cytoplasmic channels that are thought to facilitate the delivery of nutrients from ensheathing oligodendrocytes. Our results demonstrate that myelinated axons of parvalbumin inhibitory interneurons exhibit distinctive features that may support the specialized functions of this neuron type in human neocortical circuits
Recommended from our members
Vascular changes in diabetic retinopathy-a longitudinal study in the Nile rat.
Diabetic retinopathy is the most common microvascular complication of diabetes and is a major cause of blindness, but an understanding of the pathogenesis of the disease has been hampered by a lack of accurate animal models. Here, we explore the dynamics of retinal cellular changes in the Nile rat (Arvicanthis niloticus), a carbohydrate-sensitive model for type 2 diabetes. The early retinal changes in diabetic Nile rats included increased acellular capillaries and loss of pericytes that correlated linearly with the duration of diabetes. These vascular changes occurred in the presence of microglial infiltration but in the absence of retinal ganglion cell loss. After a prolonged duration of diabetes, the Nile rat also exhibits a spectrum of retinal lesions commonly seen in the human condition including vascular leakage, capillary non-perfusion, and neovascularization. Our longitudinal study documents a range and progression of retinal lesions in the diabetic Nile rat remarkably similar to those observed in human diabetic retinopathy, and suggests that this model will be valuable in identifying new therapeutic strategies
Rotating Bose gas with hard-core repulsion in a quasi-2D harmonic trap: vortices in BEC
We consider a gas of N(=6, 10, 15) Bose particles with hard-core repulsion,
contained in a quasi-2D harmonic trap and subjected to an overall angular
velocity about the z-axis. Exact diagonalization of the
many-body Hamiltonian matrix in given subspaces of the total (quantized)
angular momentum L, with (e.g. for L=N=15, n =240782)
was carried out using Davidson's algorithm. The many-body variational ground
state wavefunction, as also the corresponding energy and the reduced
one-particle density-matrix were calculated. With the usual identification of
as the Lagrange multiplier associated with L for a rotating
system, the phase diagram (or the stability line) was determined
that gave a number of critical angular velocities at which the ground state angular momentum and the associated
condensate fraction undergo abrupt jumps.
A number of (total) angular momentum states were found to be stable at
successively higher critical angular velocities $\Omega_{{\bf c}i}, \
i=1,2,3,...L_{z}>N\Omega_{{\bf c}i}_{z}(\sim 4)$ orders of magnitude in the moderately to the weakly
interacting regime.Comment: Revtex, 11 pages, 1 table as ps file, 4 figures as ps file
A quantum point contact for neutral atoms
We show that the conductance of neutral atoms through a tightly confining
waveguide constriction is quantized in units of lambda_dB^2/pi, where lambda_dB
is the de Broglie wavelength of the incident atoms. Such a constriction forms
the atom analogue of an electron quantum point contact and is an example of
quantum transport of neutral atoms in an aperiodic system. We present a
practical constriction geometry that can be realized using a microfabricated
magnetic waveguide, and discuss how a pair of such constrictions can be used to
study the quantum statistics of weakly interacting gases in small traps.Comment: 5 pages with 3 figures. To appear in Phys. Rev. Let
Coreless vortex ground state of the rotating spinor condensate
We study the ground state of the rotating spinor condensate and show that for
slow rotation the ground state of the ferromagnetic spinor condensate is a
coreless vortex. While coreless vortex is not topologically stable, we show
that there is an energetic threshold for the creation of a coreless vortex.
This threshold corresponds to a critical rotation frequency that vanishes as
the system size increases. Also, we demonstrate the dramatically different
behavior of the spinor condensate with anti-ferromagnetic interactions. For
anti-ferromagnetic spinor condensate the angular momentum as a function of
rotation frequency exhibits the familiar staircase behavior, but in contrast to
an ordinary condensate the first step is to the state with angular momentum 1/2
per particle.Comment: v2: Numerical parameters for trapping frequency in z-direction and
for the particle number changed. Two new citations added ([13] and [22]).
More discussion in chapter III A. added. A new Figure 4 added, former figure
4 changed to Figure
1/2-Anyons in small atomic Bose-Einstein condensates
We discuss a way of creating, manipulating and detecting anyons in rotating
Bose-Einstein condensates consisting of a small number of atoms . By achieving
a quasidegeneracy in the atomic motional states we drive the system into a
1/2--Laughlin state for fractional quantum Hall bosons. Localized
1/2--quasiholes can be created by focusing lasers at the desired positions. We
show how to manipulate these quasiholes in order to probe directly their
1/2--statistics.Comment: 4 pages, 3 figure
Vortex states in binary mixture of Bose-Einstein condensates
The vortex configurations in the Bose-Einstein condensate of the mixture of
two different spin states |F=1,m_f=-1> and |2,1> of ^{87}Rb atoms corresponding
to the recent experiments by Matthews et. al. (Phys. Rev. Lett. 83, 2498
(1999)) are considered in the framework of the Thomas-Fermi approximation as
functions of N_2/N_1, where N_1 is the number of atoms in the state |1,-1> and
N_2 - in the state |2,1>. It is shown that for nonrotating condensates the
configuration with the |1,-1> fluid forming the shell about the |2,1> fluid
(configuration "a") has lower energy than the opposite configuration
(configuration "b") for all values of N_2/N_1. When the |1,-1> fluid has net
angular momentum and forms an equatorial ring around the resting central
condensate |2,1>, the total energy of the system is higher than the ground
energy, but the configuration "a" has lower energy than the configuration "b"
for all N_2/N_1. On the other hand, when the |2> fluid has the net angular
momentum, for the lowest value of the angular momentum \hbar l (l=1) there is
the range of the ratio N_2/N_1 where the configuration "b" has lower energy
than the configuration "a". For higher values of the angular momentum the
configuration "b" is stable for all values of N_2/N_1.Comment: minor changes, references adde
Kelvin Modes of a fast rotating Bose-Einstein Condensate
Using the concept of diffused vorticity and the formalism of rotational
hydrodynamics we calculate the eigenmodes of a harmonically trapped
Bose-Einstein condensate containing an array of quantized vortices. We predict
the occurrence of a new branch of anomalous excitations, analogous to the
Kelvin modes of the single vortex dynamics. Special attention is devoted to the
excitation of the anomalous scissors mode.Comment: 7 pages, 3 figures, submitted to Phys. Rev.
- …
