19 research outputs found
Nucleosomes in serum as a marker for cell death
The concentration of nucleosomes is elevated in blood of patients with diseases which are associated with enhanced cell death. In order to detect these circulating nucleosomes, we used the Cell Death Detection-ELISA(Plus) (CDDE) from Roche Diagnostics (Mannheim, Germany) (details at http:\textbackslash{}\textbackslash{}biochem.roche.com). For its application in liquid materials we performed various modifications: we introduced a standard curve with nucleosome-rich material, which enabled direct quantification and improved comparability of the values within (CVinterassay:3.0-4.1%) and between several runs (CVinterassay:8.6-13.5%), and tested the analytical specificity of the ELISA. Because of the fast elimination of nucleosomes from circulation and their limited stability, we compared plasma and serum matrix and investigated in detail the pre-analytical handling of serum samples which can considerably influence the test results. Careless venipuncture producing hemolysis, delayed centrifugation and bacterial contamination of the blood samples led to false-positive results; delayed stabilization with EDTA and insufficient storage conditions resulted in false-negative values. At temperatures of -20 degreesC, serum samples which were treated with 10 mM EDTA were stable for at least 6 months. In order to avoid possible interfering factors, we recommend a schedule for the pre-analytical handling of the samples. As the first stage, the possible clinical application was investigated in the sera of 310 persons. Patients with solid tumors (n = 220; mean = 361 Arbitrary Units (AU)) had considerably higher values than healthy persons (n = 50; mean = 30 AU; P = 0.0001) and patients with inflammatory diseases (n = 40; mean = 296 AU; p = 0.096). Within the group of patients with tumors, those in advanced stages (UICC 4) showed significantly higher values than those in early stages (UICC 1-3) (P = 0.0004)
FLAG assay as a novel method for real-time signal generation during PCR: application to detection and genotyping of KRAS codon 12 mutations
Real-time signal generation methods for detection and characterization of low-abundance mutations in genomic DNA are powerful tools for cancer diagnosis and prognosis. Mutations in codon 12 of the oncogene KRAS, for example, are frequently found in several types of human cancers. We have developed a novel real-time PCR technology, FLAG (FLuorescent Amplicon Generation) and adapted it for simultaneously (i) amplifying mutated codon 12 KRAS sequences, (ii) monitoring in real-time the amplification and (iii) genotyping the exact nucleotide alteration. FLAG utilizes the exceptionally thermostable endonuclease PspGI for real-time signal generation by cleavage of quenched fluorophores from the 5′-end of the PCR products and, concurrently, for selecting KRAS mutations over wild type. By including peptide-nucleic-acid probes in the reaction, simultaneous genotyping is achieved that circumvents the requirement for sequencing. FLAG enables high-throughput, closed-tube KRAS mutation detection down to ∼0.1% mutant-to-wild type. The assay was validated on model systems and compared with allele-specific PCR sequencing for screening 27 cancer specimens. Diverse applications of FLAG for real-time PCR or genotyping applications in cancer, virology or infectious diseases are envisioned
