1,076 research outputs found

    Conversational Analysis using Utterance-level Attention-based Bidirectional Recurrent Neural Networks

    Full text link
    Recent approaches for dialogue act recognition have shown that context from preceding utterances is important to classify the subsequent one. It was shown that the performance improves rapidly when the context is taken into account. We propose an utterance-level attention-based bidirectional recurrent neural network (Utt-Att-BiRNN) model to analyze the importance of preceding utterances to classify the current one. In our setup, the BiRNN is given the input set of current and preceding utterances. Our model outperforms previous models that use only preceding utterances as context on the used corpus. Another contribution of the article is to discover the amount of information in each utterance to classify the subsequent one and to show that context-based learning not only improves the performance but also achieves higher confidence in the classification. We use character- and word-level features to represent the utterances. The results are presented for character and word feature representations and as an ensemble model of both representations. We found that when classifying short utterances, the closest preceding utterances contributes to a higher degree.Comment: Proceedings of INTERSPEECH 201

    Predicting the locations of possible long-lived low-mass first stars: Importance of satellite dwarf galaxies

    Full text link
    The search for metal-free stars has so far been unsuccessful, proving that if there are surviving stars from the first generation, they are rare, they have been polluted, or we have been looking in the wrong place. To predict the likely location of Population~III (Pop~III) survivors, we semi-analytically model early star formation in progenitors of Milky Way-like galaxies and their environments. We base our model on merger trees from the high-resolution dark matter only simulation suite \textit{Caterpillar}. Radiative and chemical feedback are taken into account self-consistently, based on the spatial distribution of the haloes. Our results are consistent with the non-detection of Pop III survivors in the Milky Way today. We find that possible surviving Population III stars are more common in Milky Way satellites than in the main Galaxy. In particular, low mass Milky Way satellites contain a much larger fraction of Pop~III stars than the Milky Way. Such nearby, low mass Milky Way satellites are promising targets for future attempts to find Pop~III survivors, especially for high-resolution, high signal-to-noise spectroscopic observations. We provide the probabilities for finding a Pop~III survivor in the red giant branch phase for all known Milky Way satellites to guide future observations.Comment: 17 pages, 12 figures, 1 table, submitted to MNRA

    A Higgs Quadruplet for Type III Seesaw and Implications for μeγ\mu \to e\gamma and μe\mu - e Conversion

    Full text link
    In Type III seesaw model the heavy neutrinos are contained in leptonic triplet representations. The Yukawa couplings of the triplet fermion and the left-handed neutrinos with the doublet Higgs field produce the Dirac mass terms. Together with the Majorana masses for the leptonic triplets, the light neutrinos obtain non-zero seesaw masses. We point out that it is also possible to have a quadruplet Higgs field to produce the Dirac mass terms to facilitate the seesaw mechanism. The vacuum expectation value of the quadruplet Higgs is constrained to be small by electroweak precision data. Therefore the Yukawa couplings of a quadruplet can be much larger than those for a doublet. We also find that unlike the usual Type III seesaw model where at least two copies of leptonic triplets are needed, with both doublet and quadruplet Higgs representations, just one leptonic triplet is possible to have a phenomenologically acceptable model because light neutrino masses can receive sizable contributions at both tree and one loop levels. Large Yukawa couplings of the quadruplet can induce observable effects for lepton flavor violating processes μeγ\mu \to e \gamma and μe\mu - e conversion. Implications of the recent μeγ\mu \to e\gamma limit from MEG and also limit on μe\mu - e conversion on Au are also given. Some interesting collider signatures for the doubly charged Higgs boson in the quadruplet are discussed.Comment: Latex 11 pages, 1 figure. A few references adde

    Descendants of the first stars: the distinct chemical signature of second generation stars

    Full text link
    Extremely metal-poor (EMP) stars in the Milky Way (MW) allow us to infer the properties of their progenitors by comparing their chemical composition to the metal yields of the first supernovae. This method is most powerful when applied to mono-enriched stars, i.e. stars that formed from gas that was enriched by only one previous supernova. We present a novel diagnostic to identify this subclass of EMP stars. We model the first generations of star formation semi-analytically, based on dark matter halo merger trees that yield MW-like halos at the present day. Radiative and chemical feedback are included self-consistently and we trace all elements up to zinc. Mono-enriched stars account for only 1%\sim 1\% of second generation stars in our fiducial model and we provide an analytical formula for this probability. We also present a novel analytical diagnostic to identify mono-enriched stars, based on the metal yields of the first supernovae. This new diagnostic allows us to derive our main results independently from the specific assumptions made regarding Pop III star formation, and we apply it to a set of observed EMP stars to demonstrate its strengths and limitations. Our results may provide selection criteria for current and future surveys and therefore contribute to a deeper understanding of EMP stars and their progenitors.Comment: 18 pages, 20 figures, published in MNRA

    Bounds on neutrino masses from leptogenesis in type-II see-saw models

    Full text link
    The presence of the triplet ΔL\Delta_{L} in left-right symmetric theories leads to type-II see-saw mechanism for the neutrino masses. In these models, assuming a normal mass hierarchy for the heavy Majorana neutrinos, we derive a lower bound on the mass of the lightest of heavy Majorana neutrino from the leptogenesis constraint. From this bound we establish a consistent picture for the hierarchy of heavy Majorana neutrinos in a class of left right symmetric models in which we identify the neutrino Dirac mass matrix with that of Fritzsch type charged lepton mass matrix. It is shown that these values are compatible with the current neutrino oscillation data.Comment: minor typos corrected, references added, match with published versio
    corecore