675 research outputs found
Separable Concave Optimization Approximately Equals Piecewise-Linear Optimization
We study the problem of minimizing a nonnegative separable concave function
over a compact feasible set. We approximate this problem to within a factor of
1+epsilon by a piecewise-linear minimization problem over the same feasible
set. Our main result is that when the feasible set is a polyhedron, the number
of resulting pieces is polynomial in the input size of the polyhedron and
linear in 1/epsilon. For many practical concave cost problems, the resulting
piecewise-linear cost problem can be formulated as a well-studied discrete
optimization problem. As a result, a variety of polynomial-time exact
algorithms, approximation algorithms, and polynomial-time heuristics for
discrete optimization problems immediately yield fully polynomial-time
approximation schemes, approximation algorithms, and polynomial-time heuristics
for the corresponding concave cost problems.
We illustrate our approach on two problems. For the concave cost
multicommodity flow problem, we devise a new heuristic and study its
performance using computational experiments. We are able to approximately solve
significantly larger test instances than previously possible, and obtain
solutions on average within 4.27% of optimality. For the concave cost facility
location problem, we obtain a new 1.4991+epsilon approximation algorithm.Comment: Full pape
Strongly Polynomial Primal-Dual Algorithms for Concave Cost Combinatorial Optimization Problems
We introduce an algorithm design technique for a class of combinatorial
optimization problems with concave costs. This technique yields a strongly
polynomial primal-dual algorithm for a concave cost problem whenever such an
algorithm exists for the fixed-charge counterpart of the problem. For many
practical concave cost problems, the fixed-charge counterpart is a well-studied
combinatorial optimization problem. Our technique preserves constant factor
approximation ratios, as well as ratios that depend only on certain problem
parameters, and exact algorithms yield exact algorithms.
Using our technique, we obtain a new 1.61-approximation algorithm for the
concave cost facility location problem. For inventory problems, we obtain a new
exact algorithm for the economic lot-sizing problem with general concave
ordering costs, and a 4-approximation algorithm for the joint replenishment
problem with general concave individual ordering costs
A Linear Approximation Approach to Duality in Nonlinear Programming
Linear approximation and linear programming duality theory are used as unifying tools to develop saddlepoint, Fenchel and local duality theory. Among results presented is a new and elementary proof of the necessity and sufficiency of the stability condition for saddlepoint duality, an equivalence between the saddlepoint and Fenchel theories, and nasc for an optimal solution of an optimization problem to be a Kuhn-Tucker point. Several of the classic "constraint qualifications" are discussed with respect to this last condition. In addition, generalized versions of Fenchel and Rockafeller duals are introduced. Finally, a shortened proof is given of a result of Mangasarian and Fromowitz that under fairly general conditions an optimal point is also a Fritz John point.Supported in part by the US Army Research Office (Durham) under Contract DAHC04-70-C-005
Location Games and Bounds for Median Problems
We consider a two-person zero-sum game in which the maximizer selects a point in a given bounded planar region, the minimizer selects K points in that region,.and the payoff is the distance from the maximizer's location to the minimizer's location closest to it. In a variant of this game, the maximizer has the privilege of restricting the game to any subset of the given region. We evaluate/approximate the values (and the saddle point strategies) of these games for K = 1 as well as for K + , thus obtaining tight upper bounds (and worst possible demand distributions) for K-median problems
Network Flow Models for Designing Diameter-Constrained Minimum Spanning and Steiner Trees
The Diameter-Constrained Minimum Spanning Tree Problem seeks a least cost spanning tree subject to a (diameter) bound imposed on the number of edges in the tree between any node pair. A traditional multicommodity flow model with a commodity for every pair of nodes was unable to solve a 20-node and 100-edge problem after one week of computation. We formulate the problem as a directed tree from a selected central node or a selected central edge. Our model simultaneously finds a central node or a central edge and uses it as the source for the commodities in a directed multicommodity flow model with hop constraints. The new model has been able to solve the 20-node, 100-edge instance to optimality after less than four seconds. We also present model enhancements when the diameter bound is odd (these situations are more difficult). We show that the linear programming relaxation of the best formulations discussed in this paper always give an optimal integer solution for two special, polynomially-solvable cases of the problem. We also examine the Diameter Constrained Minimum Steiner Tree problem. We present computational experience in solving problem instances with up to 100 nodes and 1000 edges. The largest model contains more than 250,000 integer variables and more than 125,000 constraints
Extremum Properties of Hexagonal Partitioning and the Uniform Distribution in Euclidean Location
Shortest Paths, Network Design and Associated Polyhedra
We study a specialized version of network design problems that arise in telecommunication, transportation and other industries. The problem, a generalization of the shortest path problem, is defined on an undirected network consisting of a set of arcs on which we can install (load), at a cost, a choice of up to three types of capacitated facilities. Our objective is to determine the configuration of facilities to load on each arc that will satisfy the demand of a single commodity at the lowest possible cost. Our results (i) demonstrate that the single-facility loading problem and certain "common breakeven point" versions of the two-facility and three-facility loading problems are polynomially solvable as a shortest path problem; (ii) show that versions of the twofacility loading problem are strongly NP-hard, but that a shortest path solution provides an asymptotically "good" heuristic; and (iii) characterize the optimal solution (that is, specify a linear programming formulation with integer solutions) of the common breakeven point versions of the two-facility and three-facility loading problems. In this development, we introduce two new families of facets, give geometric interpretations of our results, and demonstrate the usefulness of partitioning the space of the problem parameters to establish polyhedral integrality properties. Generalizations of our results apply to (i) multicommodity applications and (ii) situations with more than three facilities
Convergence Conditions for Variational Inequality Algorithms
Within the extensive variational inequality literature, researchers have developed many algorithms. Depending upon the problem setting, these algorithms ensure the convergence of (i) the entire sequence of iterates, (ii) a subsequence of the iterates, or (iii) averages of the iterates. To establish these convergence results, the literature repeatedly invokes several basic convergence theorems. In this paper, we review these theorems and a few convergence results they imply, and introduce a new result, called the orthogonality theorem, for establishing the convergence of several algorithms for solving a certain class of variational inequalities. Several of the convergence results impose a condition of strong-f-monotonicity on the problem function. We also provide a general overview of the properties of strong-f-monotonicity, including some new results (for example, the relationship between strong-f-monotonicity and convexity)
Strong Formulations for Network Design Problems with Connectivity Requirements
The network design problem with connectivity requirements (NDC) models a wide variety of celebrated combinatorial optimization problems including the minimum spanning tree, Steiner tree, and survivable network design problems. We develop strong formulations for two versions of the edge-connectivity NDC problem: unitary problems requiring connected network designs, and nonunitary problems permitting non-connected networks as solutions. We (i) present a new directed formulation for the unitary NDC problem that is stronger than a natural undirected formulation, (ii) project out several classes of valid inequalities-partition inequalities, odd-hole inequalities, and combinatorial design inequalities-that generalize known classes of valid inequalities for the Steiner tree problem to the unitary NDC problem, and (iii) show how to strengthen and direct nonunitary problems. Our results provide a unifying framework for strengthening formulations for NDC problems, and demonstrate the strength and power of flow-based formulations for network design problems with connectivity requirements
- …
