529 research outputs found
Duality for symmetric second rank tensors. II. The linearized gravitational field
The construction of dual theories for linearized gravity in four dimensions
is considered. Our approach is based on the parent Lagrangian method previously
developed for the massive spin-two case, but now considered for the zero mass
case. This leads to a dual theory described in terms of a rank two symmetric
tensor, analogous to the usual gravitational field, and an auxiliary
antisymmetric field. This theory has an enlarged gauge symmetry, but with an
adequate partial gauge fixing it can be reduced to a gauge symmetry similar to
the standard one of linearized gravitation. We present examples illustrating
the general procedure and the physical interpretation of the dual fields. The
zero mass case of the massive theory dual to the massive spin-two theory is
also examined, but we show that it only contains a spin-zero excitation.Comment: 20 pages, no figure
New pixelized Micromegas detector with low discharge rate for the COMPASS experiment
New Micromegas (Micro-mesh gaseous detectors) are being developed in view of
the future physics projects planned by the COMPASS collaboration at CERN.
Several major upgrades compared to present detectors are being studied:
detectors standing five times higher luminosity with hadron beams, detection of
beam particles (flux up to a few hundred of kHz/mm^{2}, 10 times larger than
for the present Micromegas detectors) with pixelized read-out in the central
part, light and integrated electronics, and improved robustness. Two solutions
of reduction of discharge impact have been studied, with Micromegas detectors
using resistive layers and using an additional GEM foil. Performance of such
detectors has also been measured. A large size prototypes with nominal active
area and pixelized read-out has been produced and installed at COMPASS in 2010.
In 2011 prototypes featuring an additional GEM foil, as well as an resistive
prototype, are installed at COMPASS and preliminary results from those
detectors presented very good performance. We present here the project and
report on its status, in particular the performance of large size prototypes
with an additional GEM foil.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous
Detectors conference (MPGD2011), 29-31 August 2011, Kobe, Japa
New pixelized Micromegas detector for the COMPASS experiment
New Micromegas (Micro-mesh gaseous detectors) are being developed in view of
the future physics projects planned by the COMPASS collaboration at CERN.
Several major upgrades compared to present detectors are being studied:
detectors standing five times higher luminosity with hadron beams, detection of
beam particles (flux up to a few hundred of kHz/mm^2, 10 times larger than for
the present detectors) with pixelized read-out in the central part, light and
integrated electronics, and improved robustness. Studies were done with the
present detectors moved in the beam, and two first pixelized prototypes are
being tested with muon and hadron beams in real conditions at COMPASS. We
present here this new project and report on two series of tests, with old
detectors moved into the beam and with pixelized prototypes operated in real
data taking condition with both muon and hadron beams.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous
Detectors conference (MPGD2009), 12-15 June 2009, Kolympari, Crete, Greece
Minor details added and language corrections don
Many-body effects in 16O(e,e'p)
Effects of nucleon-nucleon correlations on exclusive reactions on
closed-shell nuclei leading to single-hole states are studied using
( MeV, ) as an example. The quasi-hole wave
function, calculated from the overlap of translationally invariant many-body
variational wave functions containing realistic spatial, spin and isospin
correlations, seems to describe the initial state of the struck proton
accurately inside the nucleus, however it is too large at the surface. The
effect of short-range correlations on the final state is found to be largely
cancelled by the increase in the transparency for the struck proton. It is
estimated that the values of the spectroscopic factors obtained with the DWIA
may increase by a few percent due to correlation effects in the final state.Comment: 21 Pages, PHY-7849-TH-9
Fast photon detection for the COMPASS RICH detector
The COMPASS experiment at the SPS accelerator at CERN uses a large scale Ring
Imaging CHerenkov detector (RICH) to identify pions, kaons and protons in a
wide momentum range. For the data taking in 2006, the COMPASS RICH has been
upgraded in the central photon detection area (25% of the surface) with a new
technology to detect Cherenkov photons at very high count rates of several 10^6
per second and channel and a new dead-time free read-out system, which allows
trigger rates up to 100 kHz. The Cherenkov photons are detected by an array of
576 visible and ultra-violet sensitive multi-anode photomultipliers with 16
channels each. The upgraded detector showed an excellent performance during the
2006 data taking.Comment: Proceeding of the IPRD06 conference (Siena, Okt. 06
The Fast Read-out System for the MAPMTs of COMPASS RICH-1
A fast readout system for the upgrade of the COMPASS RICH detector has been
developed and successfully used for data taking in 2006 and 2007. The new
readout system for the multi-anode PMTs in the central part of the photon
detector of the RICH is based on the high-sensitivity MAD4
preamplifier-discriminator and the dead-time free F1-TDC chip characterized by
high-resolution. The readout electronics has been designed taking into account
the high photon flux in the central part of the detector and the requirement to
run at high trigger rates of up to 100 kHz with negligible dead-time. The
system is designed as a very compact setup and is mounted directly behind the
multi-anode photomultipliers. The data are digitized on the frontend boards and
transferred via optical links to the readout system. The read-out electronics
system is described in detail together with its measured performances.Comment: Proceeding of RICH2007 Conference, Trieste, Oct. 2007. v2: minor
change
Towards the classification of static vacuum spacetimes with negative cosmological constant
We present a systematic study of static solutions of the vacuum Einstein
equations with negative cosmological constant which asymptotically approach the
generalized Kottler (``Schwarzschild--anti-de Sitter'') solution, within
(mainly) a conformal framework. We show connectedness of conformal infinity for
appropriately regular such space-times. We give an explicit expression for the
Hamiltonian mass of the (not necessarily static) metrics within the class
considered; in the static case we show that they have a finite and well defined
Hawking mass. We prove inequalities relating the mass and the horizon area of
the (static) metrics considered to those of appropriate reference generalized
Kottler metrics. Those inequalities yield an inequality which is opposite to
the conjectured generalized Penrose inequality. They can thus be used to prove
a uniqueness theorem for the generalized Kottler black holes if the generalized
Penrose inequality can be established.Comment: the discussion of our results includes now some solutions of Horowitz
and Myers; typos corrected here and there; a shortened version of this
version will appear in Journal of Mathematical Physic
Measurement of the charged-pion polarisability
The COMPASS collaboration at CERN has investigated pion Compton scattering,
, at centre-of-mass energy below 3.5 pion
masses. The process is embedded in the reaction
, which is initiated by
190\,GeV pions impinging on a nickel target. The exchange of quasi-real photons
is selected by isolating the sharp Coulomb peak observed at smallest momentum
transfers, \,(GeV/). From a sample of 63\,000 events the
pion electric polarisability is determined to be $\alpha_\pi\ =\ (\,2.0\ \pm\
0.6_{\mbox{\scriptsize stat}}\ \pm\ 0.7_{\mbox{\scriptsize syst}}\,) \times
10^{-4}\,\mbox{fm}^3\alpha_\pi=-\beta_\pi$, which
relates the electric and magnetic dipole polarisabilities. It is the most
precise measurement of this fundamental low-energy parameter of strong
interaction, that has been addressed since long by various methods with
conflicting outcomes. While this result is in tension with previous dedicated
measurements, it is found in agreement with the expectation from chiral
perturbation theory. An additional measurement replacing pions by muons, for
which the cross-section behavior is unambigiously known, was performed for an
independent estimate of the systematic uncertainty.Comment: Published version: 9 pages, 3 figures, 1 tabl
Measurement of the Longitudinal Spin Transfer to Lambda and Anti-Lambda Hyperons in Polarised Muon DIS
The longitudinal polarisation transfer from muons to lambda and anti-lambda
hyperons, D_LL, has been studied in deep inelastic scattering off an
unpolarised isoscalar target at the COMPASS experiment at CERN. The spin
transfers to lambda and anti-lambda produced in the current fragmentation
region exhibit different behaviours as a function of x and xF . The measured x
and xF dependences of D^lambda_LL are compatible with zero, while
D^anti-lambda_LL tends to increase with xF, reaching values of 0.4 - 0.5. The
resulting average values are D^lambda_LL = -0.012 +- 0.047 +- 0.024 and
D^anti-lambda_LL = 0.249 +- 0.056 +- 0.049. These results are discussed in the
frame of recent model calculations.Comment: 13 pages, 7 figure
Realistic Model of the Nucleon Spectral Function in Few- and Many- Nucleon Systems
By analysing the high momentum features of the nucleon momentum distribution
in light and complex nuclei, it is argued that the basic two-nucleon
configurations generating the structure of the nucleon Spectral Function at
high values of the nucleon momentum and removal energy, can be properly
described by a factorised ansatz for the nuclear wave function, which leads to
a nucleon Spectral Function in the form of a convolution integral involving the
momentum distributions describing the relative and center-of-mass motion of a
correlated nucleon-nucleon pair embedded in the medium. The Spectral Functions
of and infinite nuclear matter resulting from the convolution formula
and from many-body calculations are compared, and a very good agreement in a
wide range of values of nucleon momentum and removal energy is found.
Applications of the model to the analysis of inclusive and exclusive processes
are presented, illustrating those features of the cross section which are
sensitive to that part of the Spectral Function which is governed by
short-range and tensor nucleon-nucleon correlations.Comment: 40 pages Latex , 16 ps figures available from the above e-mail
address or from [email protected]
- …
