503 research outputs found
Phase reconstruction of spectrograms based on a model of repeated audio events
Phase recovery of modified spectrograms is a major issue in audio signal
processing applications, such as source separation. This paper introduces a
novel technique for estimating the phases of components in complex mixtures
within onset frames in the Time-Frequency (TF) domain. We propose to exploit
the phase repetitions from one onset frame to another. We introduce a reference
phase which characterizes a component independently of its activation times.
The onset phases of a component are then modeled as the sum of this reference
and an offset which is linearly dependent on the frequency. We derive a complex
mixture model within onset frames and we provide two algorithms for the
estimation of the model phase parameters. The model is estimated on
experimental data and this technique is integrated into an audio source
separation framework. The results demonstrate that this model is a promising
tool for exploiting phase repetitions, and point out its potential for
separating overlapping components in complex mixtures.Comment: IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA) 201
RealCertify: a Maple package for certifying non-negativity
Let (resp. ) be the field of rational (resp. real)
numbers and be variables. Deciding the non-negativity
of polynomials in over or over semi-algebraic
domains defined by polynomial constraints in is a classical
algorithmic problem for symbolic computation.
The Maple package \textsc{RealCertify} tackles this decision problem by
computing sum of squares certificates of non-negativity for inputs where such
certificates hold over the rational numbers. It can be applied to numerous
problems coming from engineering sciences, program verification and
cyber-physical systems. It is based on hybrid symbolic-numeric algorithms based
on semi-definite programming.Comment: 4 pages, 2 table
Formal Proofs for Nonlinear Optimization
We present a formally verified global optimization framework. Given a
semialgebraic or transcendental function and a compact semialgebraic domain
, we use the nonlinear maxplus template approximation algorithm to provide a
certified lower bound of over . This method allows to bound in a modular
way some of the constituents of by suprema of quadratic forms with a well
chosen curvature. Thus, we reduce the initial goal to a hierarchy of
semialgebraic optimization problems, solved by sums of squares relaxations. Our
implementation tool interleaves semialgebraic approximations with sums of
squares witnesses to form certificates. It is interfaced with Coq and thus
benefits from the trusted arithmetic available inside the proof assistant. This
feature is used to produce, from the certificates, both valid underestimators
and lower bounds for each approximated constituent. The application range for
such a tool is widespread; for instance Hales' proof of Kepler's conjecture
yields thousands of multivariate transcendental inequalities. We illustrate the
performance of our formal framework on some of these inequalities as well as on
examples from the global optimization literature.Comment: 24 pages, 2 figures, 3 table
Auto-archivage des publications scientifiques : Synthèse d'enquêtes menées auprès des chercheurs
Cette étude a pour objet de dresser un panorama des enquêtes réalisées auprès des chercheurs concernant l'auto-archivage de leurs publications. Le but est de pointer ce qu'elles révèlent des motivations et freins des chercheurs, ainsi que des différences qui apparaissent selon les disciplines
Certification of inequalities involving transcendental functions: combining SDP and max-plus approximation
We consider the problem of certifying an inequality of the form ,
, where is a multivariate transcendental function, and
is a compact semialgebraic set. We introduce a certification method, combining
semialgebraic optimization and max-plus approximation. We assume that is
given by a syntaxic tree, the constituents of which involve semialgebraic
operations as well as some transcendental functions like , ,
, etc. We bound some of these constituents by suprema or infima of
quadratic forms (max-plus approximation method, initially introduced in optimal
control), leading to semialgebraic optimization problems which we solve by
semidefinite relaxations. The max-plus approximation is iteratively refined and
combined with branch and bound techniques to reduce the relaxation gap.
Illustrative examples of application of this algorithm are provided, explaining
how we solved tight inequalities issued from the Flyspeck project (one of the
main purposes of which is to certify numerical inequalities used in the proof
of the Kepler conjecture by Thomas Hales).Comment: 7 pages, 3 figures, 3 tables, Appears in the Proceedings of the
European Control Conference ECC'13, July 17-19, 2013, Zurich, pp. 2244--2250,
copyright EUCA 201
Certified Roundoff Error Bounds using Bernstein Expansions and Sparse Krivine-Stengle Representations
Floating point error is an inevitable drawback of embedded systems
implementation. Computing rigorous upper bounds of roundoff errors is
absolutely necessary to the validation of critical software. This problem is
even more challenging when addressing non-linear programs. In this paper, we
propose and compare two new methods based on Bernstein expansions and sparse
Krivine-Stengle representations, adapted from the field of the global
optimization to compute upper bounds of roundoff errors for programs
implementing polynomial functions. We release two related software package
FPBern and FPKiSten, and compare them with state of the art tools. We show that
these two methods achieve competitive performance, while computing accurate
upper bounds by comparison with other tools.Comment: 20 pages, 2 table
Certification of Real Inequalities -- Templates and Sums of Squares
We consider the problem of certifying lower bounds for real-valued
multivariate transcendental functions. The functions we are dealing with are
nonlinear and involve semialgebraic operations as well as some transcendental
functions like , , , etc. Our general framework is to use
different approximation methods to relax the original problem into polynomial
optimization problems, which we solve by sparse sums of squares relaxations. In
particular, we combine the ideas of the maxplus estimators (originally
introduced in optimal control) and of the linear templates (originally
introduced in static analysis by abstract interpretation). The nonlinear
templates control the complexity of the semialgebraic relaxations at the price
of coarsening the maxplus approximations. In that way, we arrive at a new -
template based - certified global optimization method, which exploits both the
precision of sums of squares relaxations and the scalability of abstraction
methods. We analyze the performance of the method on problems from the global
optimization literature, as well as medium-size inequalities issued from the
Flyspeck project.Comment: 27 pages, 3 figures, 4 table
A Sums-of-Squares Extension of Policy Iterations
In order to address the imprecision often introduced by widening operators in
static analysis, policy iteration based on min-computations amounts to
considering the characterization of reachable value set of a program as an
iterative computation of policies, starting from a post-fixpoint. Computing
each policy and the associated invariant relies on a sequence of numerical
optimizations. While the early research efforts relied on linear programming
(LP) to address linear properties of linear programs, the current state of the
art is still limited to the analysis of linear programs with at most quadratic
invariants, relying on semidefinite programming (SDP) solvers to compute
policies, and LP solvers to refine invariants.
We propose here to extend the class of programs considered through the use of
Sums-of-Squares (SOS) based optimization. Our approach enables the precise
analysis of switched systems with polynomial updates and guards. The analysis
presented has been implemented in Matlab and applied on existing programs
coming from the system control literature, improving both the range of
analyzable systems and the precision of previously handled ones.Comment: 29 pages, 4 figure
- …
