503 research outputs found

    Phase reconstruction of spectrograms based on a model of repeated audio events

    Full text link
    Phase recovery of modified spectrograms is a major issue in audio signal processing applications, such as source separation. This paper introduces a novel technique for estimating the phases of components in complex mixtures within onset frames in the Time-Frequency (TF) domain. We propose to exploit the phase repetitions from one onset frame to another. We introduce a reference phase which characterizes a component independently of its activation times. The onset phases of a component are then modeled as the sum of this reference and an offset which is linearly dependent on the frequency. We derive a complex mixture model within onset frames and we provide two algorithms for the estimation of the model phase parameters. The model is estimated on experimental data and this technique is integrated into an audio source separation framework. The results demonstrate that this model is a promising tool for exploiting phase repetitions, and point out its potential for separating overlapping components in complex mixtures.Comment: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA) 201

    RealCertify: a Maple package for certifying non-negativity

    Full text link
    Let Q\mathbb{Q} (resp. R\mathbb{R}) be the field of rational (resp. real) numbers and X=(X1,,Xn)X = (X_1, \ldots, X_n) be variables. Deciding the non-negativity of polynomials in Q[X]\mathbb{Q}[X] over Rn\mathbb{R}^n or over semi-algebraic domains defined by polynomial constraints in Q[X]\mathbb{Q}[X] is a classical algorithmic problem for symbolic computation. The Maple package \textsc{RealCertify} tackles this decision problem by computing sum of squares certificates of non-negativity for inputs where such certificates hold over the rational numbers. It can be applied to numerous problems coming from engineering sciences, program verification and cyber-physical systems. It is based on hybrid symbolic-numeric algorithms based on semi-definite programming.Comment: 4 pages, 2 table

    Formal Proofs for Nonlinear Optimization

    Get PDF
    We present a formally verified global optimization framework. Given a semialgebraic or transcendental function ff and a compact semialgebraic domain KK, we use the nonlinear maxplus template approximation algorithm to provide a certified lower bound of ff over KK. This method allows to bound in a modular way some of the constituents of ff by suprema of quadratic forms with a well chosen curvature. Thus, we reduce the initial goal to a hierarchy of semialgebraic optimization problems, solved by sums of squares relaxations. Our implementation tool interleaves semialgebraic approximations with sums of squares witnesses to form certificates. It is interfaced with Coq and thus benefits from the trusted arithmetic available inside the proof assistant. This feature is used to produce, from the certificates, both valid underestimators and lower bounds for each approximated constituent. The application range for such a tool is widespread; for instance Hales' proof of Kepler's conjecture yields thousands of multivariate transcendental inequalities. We illustrate the performance of our formal framework on some of these inequalities as well as on examples from the global optimization literature.Comment: 24 pages, 2 figures, 3 table

    Auto-archivage des publications scientifiques : Synthèse d'enquêtes menées auprès des chercheurs

    Get PDF
    Cette étude a pour objet de dresser un panorama des enquêtes réalisées auprès des chercheurs concernant l'auto-archivage de leurs publications. Le but est de pointer ce qu'elles révèlent des motivations et freins des chercheurs, ainsi que des différences qui apparaissent selon les disciplines

    Certification of inequalities involving transcendental functions: combining SDP and max-plus approximation

    Get PDF
    We consider the problem of certifying an inequality of the form f(x)0f(x)\geq 0, xK\forall x\in K, where ff is a multivariate transcendental function, and KK is a compact semialgebraic set. We introduce a certification method, combining semialgebraic optimization and max-plus approximation. We assume that ff is given by a syntaxic tree, the constituents of which involve semialgebraic operations as well as some transcendental functions like cos\cos, sin\sin, exp\exp, etc. We bound some of these constituents by suprema or infima of quadratic forms (max-plus approximation method, initially introduced in optimal control), leading to semialgebraic optimization problems which we solve by semidefinite relaxations. The max-plus approximation is iteratively refined and combined with branch and bound techniques to reduce the relaxation gap. Illustrative examples of application of this algorithm are provided, explaining how we solved tight inequalities issued from the Flyspeck project (one of the main purposes of which is to certify numerical inequalities used in the proof of the Kepler conjecture by Thomas Hales).Comment: 7 pages, 3 figures, 3 tables, Appears in the Proceedings of the European Control Conference ECC'13, July 17-19, 2013, Zurich, pp. 2244--2250, copyright EUCA 201

    Certified Roundoff Error Bounds using Bernstein Expansions and Sparse Krivine-Stengle Representations

    Full text link
    Floating point error is an inevitable drawback of embedded systems implementation. Computing rigorous upper bounds of roundoff errors is absolutely necessary to the validation of critical software. This problem is even more challenging when addressing non-linear programs. In this paper, we propose and compare two new methods based on Bernstein expansions and sparse Krivine-Stengle representations, adapted from the field of the global optimization to compute upper bounds of roundoff errors for programs implementing polynomial functions. We release two related software package FPBern and FPKiSten, and compare them with state of the art tools. We show that these two methods achieve competitive performance, while computing accurate upper bounds by comparison with other tools.Comment: 20 pages, 2 table

    Certification of Real Inequalities -- Templates and Sums of Squares

    Full text link
    We consider the problem of certifying lower bounds for real-valued multivariate transcendental functions. The functions we are dealing with are nonlinear and involve semialgebraic operations as well as some transcendental functions like cos\cos, arctan\arctan, exp\exp, etc. Our general framework is to use different approximation methods to relax the original problem into polynomial optimization problems, which we solve by sparse sums of squares relaxations. In particular, we combine the ideas of the maxplus estimators (originally introduced in optimal control) and of the linear templates (originally introduced in static analysis by abstract interpretation). The nonlinear templates control the complexity of the semialgebraic relaxations at the price of coarsening the maxplus approximations. In that way, we arrive at a new - template based - certified global optimization method, which exploits both the precision of sums of squares relaxations and the scalability of abstraction methods. We analyze the performance of the method on problems from the global optimization literature, as well as medium-size inequalities issued from the Flyspeck project.Comment: 27 pages, 3 figures, 4 table

    A Sums-of-Squares Extension of Policy Iterations

    Full text link
    In order to address the imprecision often introduced by widening operators in static analysis, policy iteration based on min-computations amounts to considering the characterization of reachable value set of a program as an iterative computation of policies, starting from a post-fixpoint. Computing each policy and the associated invariant relies on a sequence of numerical optimizations. While the early research efforts relied on linear programming (LP) to address linear properties of linear programs, the current state of the art is still limited to the analysis of linear programs with at most quadratic invariants, relying on semidefinite programming (SDP) solvers to compute policies, and LP solvers to refine invariants. We propose here to extend the class of programs considered through the use of Sums-of-Squares (SOS) based optimization. Our approach enables the precise analysis of switched systems with polynomial updates and guards. The analysis presented has been implemented in Matlab and applied on existing programs coming from the system control literature, improving both the range of analyzable systems and the precision of previously handled ones.Comment: 29 pages, 4 figure
    corecore