244 research outputs found

    Statistical Modeling of Epistasis and Linkage Decay using Logic Regression

    Get PDF
    Logic regression has been recognized as a tool that can identify and model non-additive genetic interactions using Boolean logic groups. Logic regression, TASSEL-GLM and SAS-GLM were compared for analytical precision using a previously characterized model system to identify the best genetic model explaining epistatic interaction of vernalization-sensitivity in barley. A genetic model containing two molecular markers identified in vernalization response in barley was selected using logic regression while both TASSEL-GLM and SAS-GLM included spurious associations in their models. The results also suggest the logic regression can be used to identify dominant/recessive relationships between epistatic alleles through its use of conjugate
operators

    Statistical Modeling of Epistasis and Linkage Decay using Logic Regression

    Get PDF
    Logic regression has been recognized as a tool that can identify and model non-additive genetic interactions using Boolean logic groups. Logic regression, TASSEL-GLM and SAS-GLM were compared for analytical precision using a previously characterized model system to identify the best genetic model explaining epistatic interaction for vernalization-sensitivity in barley. A genetic model containing two molecular markers identified in vernalization response in barley was selected using logic regression while both TASSEL-GLM and SAS-GLM included spurious associations in their models. The results also suggest the logic regression can be used to identify dominant/recessive relationships between epistatic alleles through its use of conjugate operators

    Rat adrenal uptake and metabolism of high density lipoprotein cholesteryl ester

    Get PDF
    Metabolism of high density lipoprotein (HDL) cholesteryl ester (CE) by cultured rat adrenal cells was studied. Addition of [3H]CE-HDL to cells pretreated with adrenocorticotrophin in lipoprotein poor media resulted in a time- and concentration-dependent accumulation of [3H]cholesteryl ester and production of [3H]cholesterol and [3H]corticosterone. HDL-CE metabolism could be described as the sum of a high affinity ([ HDL-cholesterol]1/2 max = 16 micrograms/ml) and low affinity ([ HDL-cholesterol]1/2 max greater than 70 micrograms/ml) process. [3H]Cholesterol was found both intracellularly and in the media. Accumulation of [3H]cholesteryl ester could not be attributed to uptake and re-esterification of unesterified cholesterol since addition of Sandoz 58-035, an inhibitor of acyl coenzyme A:cholesterol acyltransferase, did not prevent ester accumulation. Moreover, addition of chloroquine did not inhibit cholesteryl ester hydrolysis indicating that hydrolysis was not lysosomally mediated. Aminoglutethimide prevented conversion of [3H]CE-HDL to steroid hormones but did not inhibit [3H]cholesteryl ester uptake. Cellular accumulation of [3H] cholesteryl ester exceeded accumulation of 125I-apoproteins 5-fold at 1 h and 35-fold at 24 h indicating selective uptake of cholesteryl ester moiety. We conclude that rat adrenal cells possess a mechanism for selective uptake of HDL cholesteryl esters which provides substrate for steroidogenesis. These results constitute the first direct demonstration that cholesteryl esters in HDL can be used as steroidogenic substrate by the rat adrenal cortex

    Diagnostic Tests and their Application in the Management of Soil- and Water-borne Oomycete Pathogen Species

    Get PDF
    Oomycete diseases cause significant losses across a broad range of crop and aquaculture commodities worldwide. These losses can be greatly reduced by disease management practices steered by accurate and early diagnoses of pathogen presence. Determinations of disease potential can help guide optimal crop rotation regimes, varietal selections, targeted control measures, harvest timings and crop post-harvest handling. Pathogen detection prior to infection can also reduce the incidence of disease epidemics. Classical methods for the isolation of oomycete pathogens are normally deployed only after disease symptom appearance. These processes are often-time consuming, relying on culturing the putative pathogen(s) and the availability of expert taxonomic skills for accurate identification; a situation that frequently results in either delayed application, or routine ‘blanket’ over-application of control measures. Increasing concerns about pesticides in the environment and the food chain, removal or restriction of their usage combined with rising costs have focussed interest in the development and improvement of disease management systems. To be effective, these require timely, accurate and preferably quantitatve diagnoses. A wide range of rapid diagnostic tools, from point of care immunodiagnostic kits to next generation nucleotide sequencing have potential application in oomycete disease management. Here we review currently-available as well as promising new technologies in the context of commercial agricultural production systems, considering the impacts of specific biotic and abiotic and other important factors such as speed and ease of access to information and cost effectivenes

    Drosophila suzukii fight performance reduced by starvation but not affected by humidity

    Get PDF
    Drosophila suzukii is widely studied because of its status as a global pest of berries and soft fruits. Environmental conditions and access to food resources impact the physiology and ftness of D. suzukii; these factors could also affect dispersal. Flight mills are a convenient tool for measuring and comparing the fight performance of insects. In this study, two experiments examined the efects of diet and humidity on D. suzukii fight performance using custom-built fight mills, and a third experiment compared the energy reserves of D. suzukii flown or not flown on fight mills. Over all fight assays, the median fight distance and duration were 27.16 m and 2.37 min, respectively, and the mean fight velocity was 0.18 m/s. The maximum fight distance and duration by an individual were 1.75 km and 2.35 h, respectively. Drosophila suzukii provisioned with blossoms, fruits, or standard laboratory diets few farther distances and longer durations than starved flies. While starvation was associated with reduced fight performance, there were no observed differences between diet types. It remains unclear whether D. suzukii consistently use lipids, glycogen, sugar, or another energy source for fight because tethered individuals may not have flown enough to deplete energy reserves. Humidity did not affect fight performance of D. suzukii within a~2 h test period. These data indicate that most D. suzukii are likely to remain within limited area (e.g., within a field) but that some individuals can disperse long distances (field to field spread)
    corecore