2,936 research outputs found
Acceptance Dependence of Fluctuation in Particle Multiplicity
The effect of limiting the acceptance in rapidity on event-by-event
multiplicity fluctuations in nucleus-nucleus collisions has been investigated.
Our analysis shows that the multiplicity fluctuations decrease when the
rapidity acceptance is decreased. We explain this trend by assuming that the
probability distribution of the particles in the smaller acceptance window
follows binomial distribution. Following a simple statistical analysis we
conclude that the event-by-event multiplicity fluctuations for full acceptance
are likely to be larger than those observed in the experiments, since the
experiments usually have detectors with limited acceptance. We discuss the
application of our model to simulated data generated using VENUS, a widely used
event generator in heavy-ion collisions. We also discuss the results from our
calculations in presence of dynamical fluctuations and possible observation of
these in the actual data.Comment: To appear in Int. J. Mod. Phys.
Inelastic effects in electron transport studied with wave packet propagation
A time-dependent approach is used to explore inelastic effects during
electron transport through few-level systems. We study a tight-binding chain
with one and two sites connected to vibrations. This simple but transparent
model gives insight about inelastic effects, their meaning and the
approximations currently used to treat them. Our time-dependent approach allows
us to trace back the time sequence of vibrational excitation and electronic
interference, the ibrationally introduced time delay and the electronic phase
shift. We explore a full range of parameters going from weak to strong
electron-vibration coupling, from tunneling to contact, from one-vibration
description to the need of including all vibrations for a correct description
of inelastic effects in transport. We explore the validity of single-site
resonant models as well as its extension to more sites via molecular orbitals
and the conditions under which multi-orbital, multi-vibrational descriptions
cannot be simplified. We explain the physical meaning of the spectral features
in the second derivative of the electron current with respect to the bias
voltage. This permits us to nuance the meaning of the energy value of dips and
peaks. Finally, we show that finite-band effects lead to electron
back-scattering off the molecular vibrations in the regime of high-conductance,
although the drop in conductance at the vibrational threshold is rather due to
the rapid variation of the vibronic density of states.Comment: 38 pages, 14 figure
Near-horizon symmetries of extremal black holes
Recent work has demonstrated an attractor mechanism for extremal rotating
black holes subject to the assumption of a near-horizon SO(2,1) symmetry. We
prove the existence of this symmetry for any extremal black hole with the same
number of rotational symmetries as known four and five dimensional solutions
(including black rings). The result is valid for a general two-derivative
theory of gravity coupled to abelian vectors and uncharged scalars, allowing
for a non-trivial scalar potential. We prove that it remains valid in the
presence of higher-derivative corrections. We show that SO(2,1)-symmetric
near-horizon solutions can be analytically continued to give SU(2)-symmetric
black hole solutions. For example, the near-horizon limit of an extremal 5D
Myers-Perry black hole is related by analytic continuation to a non-extremal
cohomogeneity-1 Myers-Perry solution.Comment: 21 pages, latex. v2: minor improvements v3: Corrected error in
argument excluding de Sitter and Poincare-symmetric cases. Results unaffecte
Eguchi-Hanson Solitons in Odd Dimensions
We present a new class of solutions in odd dimensions to Einstein's equations
containing either a positive or negative cosmological constant. These solutions
resemble the even-dimensional Eguchi-Hanson-(A)dS metrics, with the added
feature of having Lorentzian signatures. They are asymptotic to
(A)dS. In the AdS case their energy is negative relative to that of
pure AdS. We present perturbative evidence in 5 dimensions that such metrics
are the states of lowest energy in their asymptotic class, and present a
conjecture that this is generally true for all such metrics. In the dS case
these solutions have a cosmological horizon. We show that their mass at future
infinity is less than that of pure dS.Comment: 26 pages, Late
- …
