615 research outputs found
Modal propagation characteristics of radially stratified and D-shaped metallic optical fibres
The eigenvalue equation is formulated for a general three-layered radially stratified metallic optical fiber waveguide and solved numerically using the zoom search method. The result is shown to be applicable to the common D-shaped fiber, which bears no similarity to a concentric stratum but may be converted as such through the Mobius conformal representation. The theoretical prediction agrees well with our experimental measurements, and the method should be proved valuable for optimizing metallic fiber design relationships
Detection, identification, and quantification of fungal diseases of sugar beet leaves using imaging and non-imaging hyperspectral techniques
Plant diseases influence the optical properties of plants in different ways. Depending on the host pathogen system and disease specific symptoms, different regions of the reflectance spectrum are affected, resulting in specific spectral signatures of diseased plants. The aim of this study was to examine the potential of hyperspectral imaging and non-imaging sensor systems for the detection, differentiation, and quantification of plant diseases. Reflectance spectra of sugar beet leaves infected with the fungal pathogens Cercospora beticola, Erysiphe betae, and Uromyces betae causing Cercospora leaf spot, powdery mildew, and sugar beet rust, respectively, were recorded repeatedly during pathogenesis. Hyperspectral data were analyzed using various methods of data and image analysis and were compared to ground truth data. Several approaches with different sensors on the measuring scales leaf, canopy, and field have been tested and compared. Much attention was paid on the effect of spectral, spatial, and temporal resolution of hyperspectral sensors on disease recording. Another focus of this study was the description of spectral characteristics of disease specific symptoms. Therefore, different data analysis methods have been applied to gain a maximum of information from spectral signatures. Spectral reflectance of sugar beet was affected by each disease in a characteristic way, resulting in disease specific signatures. Reflectance differences, sensitivity, and best correlating spectral bands differed depending on the disease and the developmental stage of the diseases. Compared to non-imaging sensors, the hyperspectral imaging sensor gave extra information related to spatial resolution. The preciseness in detecting pixel-wise spatial and temporal differences was on a high level. Besides characterization of diseased leaves also the assessment of pure disease endmembers as well as of different regions of typical symptoms was realized. Spectral vegetation indices (SVIs) related to physiological parameters were calculated and correlated to the severity of diseases. The SVIs differed in their sensitivity to the different diseases. Combining the information from multiple SVIs in an automatic classification method with Support Vector Machines, high sensitivity and specificity for the detection and differentiation of diseased leaves was reached in an early stage. In addition to the detection and identification, the quantification of diseases was possible with high accuracy by SVIs and Spectral Angle Mapper classification, calculated from hyperspectral images. Knowledge from measurements under controlled condition was carried over to the field scale. Early detection and monitoring of Cercospora leaf spot and powdery mildew was facilitated. The results of this study contribute to a better understanding of plant optical properties during disease development. Methods will further be applicable in precision crop protection, to realize the detection, differentiation, and quantification of plant diseases in early stages.Nachweis, Identifizierung und Quantifizierung pilzlicher Blattkrankheiten der Zuckerrübe mit abbildenden und nicht-abbildenden hyperspektralen Sensoren Pflanzenkrankheiten wirken sich auf die optischen Eigenschaften von Pflanzen in unterschiedlicher Weise aus. Verschiedene Bereiche des Reflektionsspektrums werden in Abhängigkeit von Wirt-Pathogen System und krankheitsspezifischen Symptomen beeinflusst. Hyperspektrale, nicht-invasive Sensoren bieten die Möglichkeit, optische Veränderungen zu einem frühen Zeitpunkt der Krankheitsentwicklung zu detektieren. Ziel dieser Arbeit war es, das Potential hyperspektraler abbildender und nicht abbildender Sensoren für die Erkennung, Identifizierung und Quantifizierung von Pflanzenkrankheiten zu beurteilen. Zuckerrübenblätter wurden mit den pilzlichen Erregern Cercospora beticola, Erysiphe betae bzw. Uromyces betae inokuliert und die Auswirkungen der Entwicklung von Cercospora Blattflecken, Echtem Mehltau bzw. Rübenrost auf die Reflektionseigenschaften erfasst und mit optischen Bonituren verglichen. Auf den Skalenebenen Blatt, Bestand und Feld wurden Messansätze mit unterschiedlichen Sensoren verglichen. Besonders berücksichtigt wurden hierbei Anforderungen an die spektrale, räumliche und zeitliche Auflösung der Sensoren. Ein weiterer Schwerpunkt lag auf der Beschreibung der spektralen Eigenschaften von charakteristischen Symptomen. Verschiedene Auswerteverfahren wurden mit dem Ziel angewendet, einen maximalen Informationsgehalt aus spektralen Signaturen zu gewinnen. Jede Krankheit beeinflusste die spektrale Reflektion von Zuckerrübenblättern auf charakteristische Weise. Differenz der Reflektion, Sensitivität sowie Korrelation der spektralen Bänder zur Befallsstärke variierten in Abhängigkeit von den Krankheiten. Eine höhere Präzision durch die pixelweise Erfassung räumlicher und zeitlicher Unterschiede von befallenem und gesundem Gewebe konnte durch abbildende Sensoren erreicht werden. Spektrale Vegetationsindizes (SVIs), mit Bezug zu pflanzenphysiologischen Parametern wurden aus den Hyperspektraldaten errechnet und mit der Befallsstärke korreliert. Die SVIs unterschieden sich in ihrer Sensitivität gegenüber den drei Krankheiten. Durch den Einsatz von maschinellem Lernen wurde die kombinierte Information der errechneten Vegetationsindizes für eine automatische Klassifizierung genutzt. Eine hohe Sensitivität sowie eine hohe Spezifität bezüglich der Erkennung und Differenzierung von Krankheiten wurden erreicht. Eine Quantifizierung der Krankheiten war neben der Detektion und Identifizierung mittels SVIs bzw. Klassifizierung mit Spektral Angle Mapper an hyperspektralen Bilddaten möglich. Die Ergebnisse dieser Arbeit tragen zu einem besseren Verständnis der optischen Eigenschaften von Pflanzen unter Pathogeneinfluss bei. Die untersuchten Methoden bieten die Möglichkeit in Anwendungen des Präzisionspflanzenschutzes implementiert zu werden, um eine frühzeitige Erkennung, Differenzierung und Quantifizierung von Pflanzenkrankheiten zu ermöglichen
Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress
This review explores how imaging techniques are being developed with a focus on deployment for crop monitoring methods. Imaging applications are discussed in relation to both field and glasshouse-based plants, and techniques are sectioned into ‘healthy and diseased plant classification’ with an emphasis on classification accuracy, early detection of stress, and disease severity. A central focus of the review is the use of hyperspectral imaging and how this is being utilised to find additional information about plant health, and the ability to predict onset of disease. A summary of techniques used to detect biotic and abiotic stress in plants is presented, including the level of accuracy associated with each method
Recommended from our members
Hyperspectral canopy sensing of wheat septoria tritici blotch disease
Producing quantitative and reliable measures of crop disease is essential for resistance breeding, but is challenging and time consuming using traditional phenotyping methods. Hyperspectral remote sensing has shown potential for the detection of plant diseases, but its utility for phenotyping large and diverse populations of plants under field conditions requires further evaluation. In this study, we collected canopy hyperspectral data from 335 wheat varieties using a spectroradiometer, and we investigated the use of canopy reflectance for detecting the Septoria tritici blotch (STB) disease and for quantifying the severity of infection. Canopy- and leaf-level infection metrics of STB based on traditional visual assessments and automated analyses of leaf images were used as ground truth data. Results showed (i) that canopy reflectance and the selected spectral indices show promise for quantifying STB infections, and (ii) that the normalized difference water index (NDWI) showed the best performance in detecting STB compared to other spectral indices. Moreover, partial least squares (PLS) regression models allowed for an improvement in the prediction of STB metrics. The PLS discriminant analysis (PLSDA) model calibrated based on the spectral data of four reference varieties was able to discriminate between the diseased and healthy canopies among the 335 varieties with an accuracy of 93% (Kappa = 0.60). Finally, the PLSDA model predictions allowed for the identification of wheat genotypes that are potentially more susceptible to STB, which was confirmed by the STB visual assessment. This study demonstrates the great potential of using canopy hyperspectral remote sensing to improve foliar disease assessment and to facilitate plant breeding for disease resistance
Emerging technologies for integrated nematode management: remote sensing or proximal sensing as a potential tool to detect and identify nematode infestation
Prediction of the kiwifruit decline syndrome in diseased orchards by remote sensing
Eight years after the first record in Italy, Kiwifruit Decline (KD), a destructive disease causing root rot, has already affected more than 25% of the area under kiwifruit cultivation in Italy. Diseased plants are characterised by severe decay of the fine roots and sudden wilting of the canopy, which is only visible after the season's first period of heat (July-August). The swiftness of symptom appearance prevents correct timing and positioning for sampling of the disease, and is therefore a barrier to aetiological studies. The aim of this study is to test the feasibility of thermal and multispectral imaging for the detection of KD using an unsupervised classifier. Thus, RGB, multispectral and thermal data from a kiwifruit orchard, with healthy and diseased plants, were acquired simultaneously during two consecutive growing seasons (2017-2018) using an Unmanned Aerial Vehicle (UAV) platform. Data reduction was applied to the clipped areas of the multispectral and thermal data from the 2017 survey. Reduced data were then classified with two unsupervised algorithms, a K-means and a hierarchical method. The plant vigour (canopy size and presence/absence of wilted leaves) and the health shifts exhibited by asymptomatic plants between 2017 and 2018 were evaluated from RGB data via expert assessment and used as the ground truth for cluster interpretation. Multispectral data showed a high correlation with plant vigour, while temperature data demonstrated a good potential use in predicting health shifts, especially in highly vigorous plants that were asymptomatic in 2017 and became symptomatic in 2018. The accuracy of plant vigour assessment was above 73% when using multispectral data, while clustering of the temperature data allowed the prediction of disease outbreak one year in advance, with an accuracy of 71%. Based on our results, the unsupervised clustering of remote sensing data could be a reliable tool for the identification of sampling areas, and can greatly improve aetiological studies of this new disease in kiwifruit
Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases
Hyperspectral imaging (HSI) offers high potential as a non-invasive diagnostic tool for disease detection. In this paper leaf characteristics and spectral reflectance of sugar beet leaves diseased with Cercospora leaf spot, powdery mildew and leaf rust at different development stages were connected. Light microscopy was used to describe the morphological changes in the host tissue due to pathogen colonisation. Under controlled conditions a hyperspectral imaging line scanning spectrometer (ImSpector V10E) with a spectral resolution of 2.8 nm from 400 to 1000 nm and a spatial resolution of 0.19 mm was used for continuous screening and monitoring of disease symptoms during pathogenesis. A pixel-wise mapping of spectral reflectance in the visible and near-infrared range enabled the detection and detailed description of diseased tissue on the leaf level. Leaf structure was linked to leaf spectral reflectance patterns. Depending on the interaction with the host tissue, the pathogens caused disease-specific spectral signatures. The influence of the pathogens on leaf reflectance was a function of the developmental stage of the disease and of the subarea of the symptoms. Spectral reflectance in combination with Spectral Angle Mapper classification allowed for the differentiation of mature symptoms into zones displaying all ontogenetic stages from young to mature symptoms. Due to a pixel-wise extraction of pure spectral signatures a better understanding of changes in leaf reflectance caused by plant diseases was achieved using HSI. This technology considerably improves the sensitivity and specificity of hyperspectrometry in proximal sensing of plant diseases
Novel parameter-free coalescence model for deuteron production
A microscopic understanding of (anti)deuteron production in hadron-hadron
collisions is the subject of many experimental and theoretical efforts in
nuclear physics. This topic is also very relevant for astrophysics, since the
rare production of antinuclei in our Universe could be a doorway to discover
new physics. In this work, we describe a new coalescence afterburner for event
generators based on the Wigner function formalism and we apply it to the
(anti)deuteron case, taking into account a realistic particle emitting source.
The model performance is validated using the EPOS and PYTHIA event generators
applied to proton-proton collisions at the centre-of-mass energy 13
TeV, triggered for high multiplicity events, and the experimental data measured
by ALICE in the same collision system. The model relies on the direct
measurement of the particle emitting source carried out by means of
nucleon-nucleon femtoscopic correlations in the same collision system and
energy. The resulting parameter-free model is used to predict deuteron
differential spectra assuming different deuteron wavefunctions within the
Wigner function formalism. The predicted deuteron spectra show a clear
sensitivity to the choice of the deuteron wavefunction. The Argonne
wavefunction provides the best description of the experimental data. This model
can now be used to study the production of (anti)deuterons over a wide range of
collision energies and be extended to heavier nuclei.Comment: 13 pages, 9 Figures, submitted to PR
Infrared Thermography as a Non-Invasive Tool to Explore Differences in the Musculoskeletal System of Children with Hemophilia Compared to an Age-Matched Healthy Group
Recurrent joint bleeds and silent bleeds are the most common clinical feature in patients with hemophilia. Every bleed causes an immediate inflammatory response and is the leading cause of chronic crippling arthropathy. With the help of infrared thermography we wanted to detect early differences between a group of clinical non-symptomatic children with hemophilia (CWH) with no history of clinically detected joint bleeds and a healthy age-matched group of children. This could help to discover early inflammation and help implement early treatment and preventative strategies. It could be demonstrated that infrared thermography is sensitive enough to detect more signs of early inflammatory response in the CWH than in healthy children. It seems to detect more side differences in temperature than clinical examination of silent symptoms detects tender points. Silent symptoms/tender points seem to be combined with early local inflammation. Using such a non-invasive and sensor-based early detection, prevention of overloading and bleeding might be achieved
Experimental field FarmerSpace – Assessment of digital plant protection from a farmer’s perspective, a case study for the digital scoring of weeds in sugarbeet
- …
