142 research outputs found

    Susceptibility to tuberculosis is associated with variants in the ASAP1 gene encoding a regulator of dendritic cell migration

    Get PDF
    Human genetic factors predispose to tuberculosis (TB). We studied 7.6 million genetic variants in 5,530 people with pulmonary TB and in 5,607 healthy controls. In the combined analysis of these subjects and the follow-up cohort (15,087 TB patients and controls altogether), we found an association between TB and variants located in introns of the ASAP1 gene on chromosome 8q24 (P = 2.6 × 10−11 for rs4733781; P = 1.0 × 10−10 for rs10956514). Dendritic cells (DCs) showed high ASAP1 expression that was reduced after Mycobacterium tuberculosis infection, and rs10956514 was associated with the level of reduction of ASAP1 expression. The ASAP1 protein is involved in actin and membrane remodeling and has been associated with podosomes. The ASAP1-depleted DCs showed impaired matrix degradation and migration. Therefore, genetically determined excessive reduction of ASAP1 expression in M. tuberculosis–infected DCs may lead to their impaired migration, suggesting a potential mechanism of predisposition to TB

    High-Content Imaging to Phenotype Antimicrobial Effects on Individual Bacteria at Scale.

    Get PDF
    High-content imaging (HCI) is a technique for screening multiple cells in high resolution to detect subtle morphological and phenotypic variation. The method has been commonly deployed on model eukaryotic cellular systems, often for screening new drugs and targets. HCI is not commonly utilized for studying bacterial populations but may be a powerful tool in understanding and combatting antimicrobial resistance. Consequently, we developed a high-throughput method for phenotyping bacteria under antimicrobial exposure at the scale of individual bacterial cells. Imaging conditions were optimized on an Opera Phenix confocal microscope (Perkin Elmer), and novel analysis pipelines were established for both Gram-negative bacilli and Gram-positive cocci. The potential of this approach was illustrated using isolates of Klebsiella pneumoniae, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus HCI enabled the detection and assessment of subtle morphological characteristics, undetectable through conventional phenotypical methods, that could reproducibly distinguish between bacteria exposed to different classes of antimicrobials with distinct modes of action (MOAs). In addition, distinctive responses were observed between susceptible and resistant isolates. By phenotyping single bacterial cells, we observed intrapopulation differences, which may be critical in identifying persistence or emerging resistance during antimicrobial treatment. The work presented here outlines a comprehensive method for investigating morphological changes at scale in bacterial populations under specific perturbation.IMPORTANCE High-content imaging (HCI) is a microscopy technique that permits the screening of multiple cells simultaneously in high resolution to detect subtle morphological and phenotypic variation. The power of this methodology is that it can generate large data sets comprised of multiple parameters taken from individual cells subjected to a range of different conditions. We aimed to develop novel methods for using HCI to study bacterial cells exposed to a range of different antibiotic classes. Using an Opera Phenix confocal microscope (Perkin Elmer) and novel analysis pipelines, we created a method to study the morphological characteristics of Klebsiella pneumoniae, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus when exposed to antibacterial drugs with differing modes of action. By imaging individual bacterial cells at high resolution and scale, we observed intrapopulation differences associated with different antibiotics. The outlined methods are highly relevant for how we begin to better understand and combat antimicrobial resistance

    A genomic snapshot of Salmonella enterica serovar Typhi in Colombia.

    Get PDF
    Little is known about the genetic diversity of Salmonella enterica serovar Typhi (S. Typhi) circulating in Latin America. It has been observed that typhoid fever is still endemic in this part of the world; however, a lack of standardized blood culture surveillance across Latin American makes estimating the true disease burden problematic. The Colombian National Health Service established a surveillance system for tracking bacterial pathogens, including S. Typhi, in 2006. Here, we characterized 77 representative Colombian S. Typhi isolates collected between 1997 and 2018 using pulse field gel electrophoresis (PFGE; the accepted genotyping method in Latin America) and whole genome sequencing (WGS). We found that the main S. Typhi clades circulating in Colombia were clades 2.5 and 3.5. Notably, the sequenced S. Typhi isolates from Colombia were closely related in a global phylogeny. Consequently, these data suggest that these are endemic clades circulating in Colombia. We found that AMR in S. Typhi in Colombia was uncommon, with a small subset of organisms exhibiting mutations associated with reduced susceptibility to fluoroquinolones. This is the first time that S. Typhi isolated from Colombia have been characterized by WGS, and after comparing these data with those generated using PFGE, we conclude that PFGE is unsuitable for tracking S. Typhi clones and mapping transmission. The genetic diversity of pathogens such as S. Typhi is limited in Latin America and should be targeted for future surveillance studies incorporating WGS

    Agreement between QuantiFERON®-TB Gold In-Tube and the tuberculin skin test and predictors of positive test results in Warao Amerindian pediatric tuberculosis contacts

    Get PDF
    BACKGROUND: Interferon-gamma release assays have emerged as a more specific alternative to the tuberculin skin test (TST) for detection of tuberculosis (TB) infection, especially in Bacille Calmette-Guérin (BCG) vaccinated people. We determined the prevalence of Mycobacterium tuberculosis infection by TST and QuantiFERON(®)-TB Gold In-Tube (QFT-GIT) and assessed agreement between the two test methods and factors associated with positivity in either test in Warao Amerindian children in Venezuela. Furthermore, progression to active TB disease was evaluated for up to 12 months. METHODS: 163 HIV-negative childhood household contacts under 16 years of age were enrolled for TST, QFT-GIT and chest X-ray (CXR). Follow-up was performed at six and 12 months. Factors associated with TST and QFT-GIT positivity were studied using generalized estimation equations logistic regression models. RESULTS: At baseline, the proportion of TST positive children was similar to the proportion of children with a positive QFT-GIT (47% vs. 42%, p = 0.12). Overall concordance between QFT-GIT and TST was substantial (kappa 0.76, 95% CI 0.46-1.06). Previous BCG vaccination was not associated with significantly increased positivity in either test (OR 0.68, 95% CI 0.32-1.5 for TST and OR 0.51, 95% CI 0.14-1.9 for QFT-GIT). Eleven children were diagnosed with active TB at baseline. QFT-GIT had a higher sensitivity for active TB (88%, 95% CI 47-98%) than TST (55%, 95% CI 24-83%) while specificities were similar (respectively 58% and 55%). Five initially asymptomatic childhood contacts progressed to active TB disease during follow-up. CONCLUSION: Replacement of TST by the QFT-GIT for detection of M. tuberculosis infection is not recommended in this resource-constrained setting as test results showed substantial concordance and TST positivity was not affected by previous BCG vaccination. The QFT-GIT had a higher sensitivity than the TST for the detection of TB disease. However, the value of the QFT-GIT as an adjunct in diagnosing TB disease is limited by a high variability in QFT-GIT results over time

    Surveillance of Salmonella enterica serovar  Typhi in Colombia, 2012-2015.

    Get PDF
    Salmonella Typhi (S. Typhi) is the causative agent of typhoid fever; a systemic disease affecting ~20 million people per year globally. There are little data regarding the contemporary epidemiology of typhoid in Latin America. Consequently, we aimed to describe some recent epidemiological aspects of typhoid in Colombia using cases reported to the National Public Health Surveillance System (Sivigila) between 2012 and 2015. Over the four-year reporting period there were 836 culture confirmed cases of typhoid in Colombia, with the majority (676/836; 80.1%) of reported cases originated from only seven departments. We further characterized 402 S. Typhi isolates with available corresponding data recovered from various departments of Colombia through antimicrobial susceptibility testing and molecular subtyping. The majority (235/402; 58.5%) of these typhoid cases occurred in males and were most commonly reported in those aged between 10 and 29 years (218/402; 54.2%); there were three (0.74%) reported fatalities. The overwhelming preponderance (339/402; 84.3%) of S. Typhi were susceptible to all tested antimicrobials. The most common antimicrobial to which the organisms exhibited non-susceptibility was ampicillin (30/402;7.5%), followed by nalidixic acid (23/402, 5.7%). Molecular subtyping identified substantial genetic diversity, which was well distributed across the country. Despite the diffuse pattern of S. Typhi genotypes, we identified various geographical hotspots of disease associated with local dominant genotypes. Notably, we found limited overlap of Colombian genotypes with organisms reported in other Latin American countries. Our work highlights a substantial burden of typhoid in Colombia, characterized by sustained transmission in some regions and limited epidemics in other departments. The disease is widely distributed across the country and associated with multiple antimicrobial susceptible genotypes that appear to be restricted to Colombia. This study provides a current perspective for typhoid in Latin America and highlights the importance of pathogen-specific surveillance to add insight into the limited epidemiology of typhoid in this region

    A novel therapeutic antibody screening method using bacterial high-content imaging reveals functional antibody binding phenotypes of Escherichia coli ST131

    Get PDF
    Funder: National Institute for Health Research; doi: http://dx.doi.org/10.13039/501100000272Funder: MRC Proximity to Discovery: Industry Engagement Fund Biomedical Research Exchange ProgrammeAbstract: The increase of antimicrobial resistance (AMR), and lack of new classes of licensed antimicrobials, have made alternative treatment options for AMR pathogens increasingly attractive. Recent studies have demonstrated anti-bacterial efficacy of a humanised monoclonal antibody (mAb) targeting the O25b O-antigen of Escherichia coli ST131. To evaluate the phenotypic effects of antibody binding to diverse clinical E. coli ST131 O25b bacterial isolates in high-throughput, we designed a novel mAb screening method using high-content imaging (HCI) and image-based morphological profiling to screen a mAb targeting the O25b O-antigen. Screening the antibody against a panel of 86 clinical E. coli ST131 O25:H4 isolates revealed 4 binding phenotypes: no binding (18.60%), weak binding (4.65%), strong binding (69.77%) and strong agglutinating binding (6.98%). Impaired antibody binding could be explained by the presence of insertion sequences or mutations in O-antigen or lipopolysaccharide core biosynthesis genes, affecting the amount, structure or chain length of the O-antigen. The agglutinating binding phenotype was linked with lower O-antigen density, enhanced antibody-mediated phagocytosis and increased serum susceptibly. This study highlights the need to screen candidate mAbs against large panels of clinically relevant isolates, and that HCI can be used to evaluate mAb binding affinity and potential functional efficacy against AMR bacteria

    Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation.

    Get PDF
    RIPK1 (receptor-interacting serine/threonine kinase 1) is a master regulator of signaling pathways leading to inflammation and cell death and is of medical interest as a drug target. We report four patients from three unrelated families with complete RIPK1 deficiency caused by rare homozygous mutations. The patients suffered from recurrent infections, early-onset inflammatory bowel disease, and progressive polyarthritis. They had immunodeficiency with lymphopenia and altered production of various cytokines revealed by whole-blood assays. In vitro, RIPK1-deficient cells showed impaired mitogen-activated protein kinase activation and cytokine secretion and were prone to necroptosis. Hematopoietic stem cell transplantation reversed cytokine production defects and resolved clinical symptoms in one patient. Thus, RIPK1 plays a critical role in the human immune system
    corecore